Skip to main content

One-Layer Multi-Enzyme Models of Biosensors

  • Chapter
  • First Online:

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 9))

Abstract

The amperometric biosensors have proved to be reliable and low-cost in various analytical systems with applications in biotechnology, medicine and environmental monitoring [106, 218, 229, 246, 275]. However, amperometric biosensors possess a number of serious drawbacks. One of the main reasons restricting wider use of the biosensors is a relatively short linear range of the calibration curve. Increasing the concentration range of detectable analyte, the sensitivity and specificity of the detection event improves the prospects for commercialising biosensors [176, 196, 217, 228, 246].

One way of overcoming those problems is to couple different enzymes either in sequence, in competition or in recycle pathways. Due to the appropriate combination of enzymes, the range of analyte species accessible to measurement, the selectivity and the sensitivity of the biosensor may be enhanced [63, 94, 137, 150, 274].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Artursson T, Eklöv T, Lundström I et al (2000) Drift correction for gas sensors using multivariate methods. J Chemometrics 14:711

    Article  CAS  Google Scholar 

  2. Baronas R, Christensen J, Ivanauskas F, Kulys J (2002) Computer simulation of amperometric biosensor response to mixtures of compounds. Nonlinear Anal Model Contr 7:3

    Google Scholar 

  3. Baronas R, Ivanauskas F, Kulys J (2003) The influence of the enzyme membrane thickness on the response of amperometric biosensors. Sensors 3:248

    Article  CAS  Google Scholar 

  4. Baronas R, Kulys J, Ivanauskas F (2004) Modeling amperometric enzyme electrode with substrate cyclic conversion. Biosens Bioelectron 19:915

    Article  CAS  Google Scholar 

  5. Baronas R, Ivanauskas F, Maslovskis R, Vaitkus P (2004) An analysis of mixtures using amperometric biosensors and artificial neural networks. J Math Chem 36:281

    Article  CAS  Google Scholar 

  6. Baronas R, Kulys J, Ivanauskas F (2004) Mathematical model of the biosensors acting in a trigger mode. Sensors 4:20

    Article  CAS  Google Scholar 

  7. Bartlett PN, Birkin PR, Wallace ENK (1997) Oxidation of β-nicotinamide adenine dinucleotide (NADH) at poly(aniline)-coated electrodes. J Chem Soc, Faraday Trans 93:1951

    Google Scholar 

  8. Castillo J, Blöchl A, Dennison S et al (2005) Glutamate detection from nerve cells using a planar electrodes array integrated in a microtiter plate. Biosens Bioelectron 20:2116

    Article  CAS  Google Scholar 

  9. Cornish-Bowden A (2004) Fundamentals of enzyme kinetics, 3rd edn. Portland Press, London

    Google Scholar 

  10. Della Ciana L, Bernacca G, Bordin F et al (1995) Highly sensitive amperometric measurement of alkaline phosphatase activity with glucose oxidase amplification. J Electronal Chem 382:129

    Article  Google Scholar 

  11. Fuhrmann B, Spohn U (1998) An enzymatic amplification flow injection analysis (FIA) system for the sensitive determination of phenol. Biosens Bioelectron 13:895

    Article  CAS  Google Scholar 

  12. Hall DL, McMullen SAH (2004) Mathematical techniques in multisensor data fusion. Artech House Information Warfare Library, 2nd edn. Artech House Inc, Norwood

    Google Scholar 

  13. Harsanyi G (2000) Sensors in biomedical applications: fundamentals, technology and applications. CRC Press, New York

    Book  Google Scholar 

  14. Kulys JJ (1981) Analytical systems based on immobilized enzymes. Mokslas, Vilnius (in Russian)

    Google Scholar 

  15. Kulys J (1981) The development of new analytical systems based on biocatalysts. Anal Lett 14(B6):377

    Google Scholar 

  16. Kulys JJ, Sorochinskii VV, Vidziunaite RA (1986) Transient response of bienzyme electrodes. Biosensors 2:135

    CAS  Google Scholar 

  17. Llinas JR, Ruiz JM (1986) Multivariate analysis of chemical data sets with factor methods. In: Vemin G, Chanon M (eds) Computer aids to chemistry. Wiley, New York

    Google Scholar 

  18. Mackey D, Killard AJ, Ambrosi A, Smyth MR (2007) Optimizing the ratio of horseradish peroxidase and glucose oxidase on a bienzyme electrode: Comparison of a theoretical and experimental approach. Sensor Actuat B-Chem 122:395

    Article  Google Scholar 

  19. Mak KKW, Wollenberger U, Scheller F, Renneberg R (2003) An amperometric bi-enzyme sensor for determination of formate using cofactor regeneration. Biosens Bioelectron 18:1095

    Article  CAS  Google Scholar 

  20. Nistor C, Rose A, Wollenberger U et al (2002) A glucose dehydrogenase biosensor as an additional signal amplification step in an enzyme-flow immunoassay. Analyst 127:1076

    Article  CAS  Google Scholar 

  21. Razumas VJ, Kulys JJ, Malinauskas AA (1980) Kinetic amperometric determination of hydrolase activity. Anal Chim Acta 117:387

    Article  CAS  Google Scholar 

  22. Scheller F, Renneberg R, Schubert F (1988) Coupled enzyme reactions in enzyme electrodes using sequence, amplification, competition, and antiinterference principles. In: Mosbach K (ed) Methods in enzymology, vol 137 Academic, New-York pp 29–43

    Google Scholar 

  23. Schulmeister T (1990) Mathematical modeling of the dynamic behavior of amperometric enzyme electrodes. Selective Electrode Rev 12:203

    Google Scholar 

  24. Rogers KR (1995) Biosensors for environmental applications. Biosens Bioelectron 10:533

    Article  CAS  Google Scholar 

  25. Scheller F, Schubert F (1992) Biosensors. Elsevier, Amsterdam

    Google Scholar 

  26. Spichiger-Keller UE (1998) Chemical sensors and biosensors for medical and biological applications. Wiley-VCH, New York

    Book  Google Scholar 

  27. Wollenberger U, Lisdat F, Scheller FW (1997) Frontiers in biosensorics 2. Practical applications. Birkhauser Verlag, Basel

    Google Scholar 

  28. Nakamura H, Karube I (2003) Current research activity in biosensors. Anal Bioanal Chem 377:446

    Article  CAS  Google Scholar 

  29. Rodriguez-Mozaz S, Marco MP, de Alda MJL, Barcelo D (2004) Biosensors for environmental applications: Future development trends. Pure Appl Chem 76:723

    Article  CAS  Google Scholar 

  30. Scheller F, Schubert F, Pfeiffer D et al (1989) Research and development of biosensors. A review. Analyst 114:653

    CAS  Google Scholar 

  31. Gajovic N, Warsinke A, Huang T et al (1999) Characterization and mathematical modeling of a bienzyme electrode for L-malate with cofactor recycling. Anal Chem 71:4657

    Article  CAS  Google Scholar 

  32. Kulys J, Schmid RD (1991) Bienzyme sensors based on chemically modified electrodes. Biosens Bioelectron 6:43

    Article  CAS  Google Scholar 

  33. Kwan RCH, Hon PYT, Mak WC et al (2006) Biosensor for rapid determination of 3-hydroxybutyrate using bienzyme system. Biosens Bioelectron 21:1101

    Article  CAS  Google Scholar 

  34. Wollenberger U, Schubert F, Pfeiffer D, Scheller FW (1993) Enhancing biosensor performance using multienzyme systems. Trends Biotechnol 11:255

    Article  CAS  Google Scholar 

  35. Kulys JJ (1981) Development of new analytical systems based on biocatalysers. Enzyme Microb Technol 3:344

    Article  CAS  Google Scholar 

  36. Mizutani F, Yamanaka T, Tanabe Y, Tsuda K (1985) An enzyme electrode for L-lactate with a chemically amplified response. Anal Chim Acta 177:153

    Article  CAS  Google Scholar 

  37. Schulmeister T, Scheller F (1985) Mathematical description of concentration profiles and anodic currents for amperometric two-enzyme electrodes. Anal Chim Acta 171:111

    Article  CAS  Google Scholar 

  38. Schulmeister T (1987) Mathematical treatment of concentration profiles and anodic current of amperometric enzyme electrodes with chemically amplified response. Anal Chim Acta 201:305

    Article  CAS  Google Scholar 

  39. Schulmeister T, Rose J, Scheller F (1997) Mathematical modelling of exponential amplification in membrane-based enzyme sensors. Biosens Bioelectron 12:1021

    Article  CAS  Google Scholar 

  40. Sorochinskii VV, Kurganov BI (1996) Amperometric biosensors with a laminated distribution of enzymes in their coating. Steady state kinetics. Biosens Bioelectron 11:45

    Article  CAS  Google Scholar 

  41. Sorochinskii VV, Kurganov BI (1996) Steady state kinetics of cyclic conversions of substrate in amperometric bienzyme sensors. Biosens Bioelectron 11:225

    Article  CAS  Google Scholar 

  42. Baronas R, Ivanauskas F, Maslovskis R et al (2007) Locally weighted neural networks for an analysis of the biosensor response. Kybernetika 43:21

    Google Scholar 

  43. Ruzicka J, Hansen EH (1988) Flow injection analysis. Wiley, New York

    Google Scholar 

  44. Bro R (2003) Multivariate calibration: What is in chemometrics for the analytical chemist? Anal Chim Acta 500:185

    Article  CAS  Google Scholar 

  45. Malkavaara P, Aln R, Kolehmainen E (2000) Chemometrics: an important tool for the modern chemist, an example from wood-processing chemistry. J Chem Inf Comput Sci 40:438

    CAS  Google Scholar 

  46. Lobanov AV, Borisov IA, Gordon SH et al (2001) Analysis of ethanol-glucose mixtures by two microbial sensors: application of chemometrics and artificial neural networks for data processing. Biosens Bioelectron 16:1001

    Article  CAS  Google Scholar 

  47. Nakamoto T, Hiramatsu H (2002) Study of odor recorder for dynamical change of odor using QCM sensors and neural network. Sens Actuators B-Chem 85:98

    Article  Google Scholar 

  48. Reder S, Dieterle F, Jansen H et al (2003) Multi-analyte assay for triazines using cross-reactive antibodies and neural networks. Biosens Bioelectron 19:447

    Article  CAS  Google Scholar 

  49. Zupan J, Gasteiger J (1999) Neural networks in chemistry and drug design, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  50. Martens H, Ns T (1989) Multivariate calibration. Wiley, Chichester

    Google Scholar 

  51. Diamond D (ed) (1998) Principles of chemical and biological sensors. Chemical Analysis: A Series of Monographs on Analytical Chemistry and Its Applications. Wiley-Interscience, New York

    Google Scholar 

  52. Turner APF, Karube I, Wilson GS (1987) Biosensors: fundamentals and applications. Oxford University Press, Oxford

    Google Scholar 

  53. Kulys JJ, Vidziunaite RA (1990) Amperometric enzyme electrodes with chemically amplified response. In: Wise DL (ed) Bioinstrumentation. Butterworths, Boston, pp 1263–1283

    Google Scholar 

  54. Schubert F, Kirstein D, Schröder KL, Scheller F (1985) Enzyme electrodes with substrate and co-enzyme amplification. Anal Chim Acta 169:391

    Article  CAS  Google Scholar 

  55. Streffer K, Kaatz H, Bauer CG et al (1998) Application of a sensitive catechol detector for determination of tyrosinase inhibitors. Anal Chim Acta 362:81

    Article  CAS  Google Scholar 

  56. Popovtzer R, Natan A, Shacham-Diamand Y (2007) Mathematical model of whole cell based bio-chip: An electrochemical biosensor for water toxicity detection. J Electroanal Chem 602:17

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romas Baronas .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Baronas, R., Ivanauskas, F., Kulys, J. (2010). One-Layer Multi-Enzyme Models of Biosensors. In: Mathematical Modeling of Biosensors. Springer Series on Chemical Sensors and Biosensors, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3243-0_7

Download citation

Publish with us

Policies and ethics