Remarks on the Controllability of Some Parabolic Equations and Systems
Chapter
First Online:
- 1.7k Downloads
Summary
This paper is devoted to present a review of recent results concerning the controllability of some (linear and nonlinear) parabolic systems. Among others, we will consider the classical heat equation, the Burgers, Navier–Stokes and Boussinesq equations, etc.
Preview
Unable to display preview. Download preview PDF.
References
- 1.G. Alessandrini and L. Escauriaza. Null-controllability of one-dimensional parabolic equations. ESAIM Control Optim. Calc. Var., 14(2):284–293, 2007.CrossRefMathSciNetGoogle Scholar
- 2.F. Ammar-Khodja, A. Benabdallah, C. Dupaix, and M. González-Burgos. A Kalman rank condition for the localized distributed controllability of a class of linear parabolic systems. J. Evol. Equ., 2009. DOI 10.1007/s00028-009-0008-8.Google Scholar
- 3.S. Anita and D. Tataru. Null controllability for the dissipative semilinear heat equation. Appl. Math. Optim., 46:97–105, 2002.zbMATHCrossRefMathSciNetGoogle Scholar
- 4.V. Barbu, T. Havarneanu, C. Popa, and S. S. Sritharan. Exact controllability for the magnetohydrodynamic equations. Comm. Pure Appl. Math., 56:732–783, 2003.zbMATHCrossRefMathSciNetGoogle Scholar
- 5.H. Bellout, F. Bloom, and J. Nec̆as. Young measure-valued solutions for non-Newtonian incompressible fluids. Comm. Partial Differential Equations, 19 (11–12):1763–1803, 1994.Google Scholar
- 6.J. M. Coron. On the controllability of the 2-D incompressible Navier–Stokes equations with the Navier slip boundary conditions. ESAIM Control Optim. Calc. Var., 1:35–75, 1995/96.Google Scholar
- 7.J. M. Coron. Control and nonlinearity, volume 136 of Mathematical surveys and monographs. American Mathematical Society, Providence, RI, 2007.zbMATHGoogle Scholar
- 8.C. Fabre. Uniqueness results for Stokes equations and their consequences in linear and nonlinear control problems. ESAIM Contrôle Optim. Calc. Var., 1:267–302, 1995/96.Google Scholar
- 9.C. Fabre, J.-P. Puel, and E. Zuazua. Approximate controllability of the semilinear heat equation. Proc. Roy. Soc. Edinburgh Sect. A, 125(1):31–61, 1995.zbMATHMathSciNetGoogle Scholar
- 10.E. Fernández-Cara, M. González-Burgos, and L. De Teresa. 2009. In preparation.Google Scholar
- 11.E. Fernández-Cara and S. Guerrero. Global Carleman inequalities for parabolic systems and applications to controllability. SIAM J. Control Optim., 45(4):1399–1446, 2006.CrossRefMathSciNetGoogle Scholar
- 12.E. Fernández-Cara and S. Guerrero. Local exact controllability of micropolar fluids. J. Math. Fluid Mech., 9(3):419–453, 2007.zbMATHCrossRefMathSciNetADSGoogle Scholar
- 13.E. Fernández-Cara and S. Guerrero. Null controllability of the Burgers system with distributed controls. Systems Control Lett., 56(5):366–372, 2007.zbMATHCrossRefMathSciNetGoogle Scholar
- 14.E. Fernández-Cara, S. Guerrero, O. Yu. Imanuvilov, and J.-P. Puel. Local exact controllability of the Navier–Stokes system. J. Math. Pures Appl. (9), 83(12):1501–1542, 2004.Google Scholar
- 15.E. Fernández-Cara, S. Guerrero, O. Yu. Imanuvilov, and J.-P. Puel. Some controllability results for the n-dimensional Navier–Stokes and Boussinesq systems with n − 1 scalar controls. SIAM J. Control and Optim., 45(1):146–173, 2006.Google Scholar
- 16.E. Fernández-Cara and E. Zuazua. The cost of approximate controllability for heat equations: The linear case. Adv. Differential Equations, 5(4–6):465–514, 2000.zbMATHMathSciNetGoogle Scholar
- 17.A. V. Fursikov. Exact boundary zero-controllability of three-dimensional Navier–Stokes equations. J. Dynam. Control Systems, 1(3):325–350, 1995.zbMATHCrossRefMathSciNetGoogle Scholar
- 18.A. V. Fursikov and O. Yu. Imanuvilov. On exact boundary zero-controllability of two-dimensional Navier–Stokes equations. Acta Appl. Math., 37(1–2):67–76, 1994.Google Scholar
- 19.A. V. Fursikov and O. Yu. Imanuvilov. Controllability of evolution equations. Lecture Notes Series 34, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, 1996.Google Scholar
- 20.A. V. Fursikov and O. Yu. Imanuvilov. Exact controllability of the Navier–Stokes and Boussinesq equations. Uspekhi Mat. Nauk, 54(3(327)):93–146, 1999. In Russian, translation in Russian Math. Surveys 54(3):565–618, 1999.Google Scholar
- 21.M. González-Burgos, S. Guerrero, and J. P. Puel. On the exact controllability of the Navier–Stokes and Boussinesq equations. 2009. To appear.Google Scholar
- 22.S. Guerrero. Local exact controllability to the trajectories of the Boussinesq system. Ann. Inst. H. Poincaré Anal. Non Linéaire, 23(1):29–61, 2006.zbMATHCrossRefMathSciNetADSGoogle Scholar
- 23.S. Guerrero and O. Yu. Imanuvilov. Remarks on global controllability for the Burgers equation with two control forces. Ann. Inst. H. Poincaré Anal. Non Linéaire, 24(6):897–906, 2007.Google Scholar
- 24.T. Havarneanu, C. Popa, and S. S. Sritharan. Exact internal controllability for the magnetohydrodynamic equations in multi-connected domains. Adv. Differential Equations, 11(8):893–929, 2006.zbMATHMathSciNetGoogle Scholar
- 25.T. Havarneanu, C. Popa, and S. S. Sritharan. Exact internal controllability for the two-dimensional magnetohydrodynamic equations. SIAM J. Control Optim., 46(5):1802–1830, 2007.zbMATHCrossRefMathSciNetGoogle Scholar
- 26.O. Yu. Imanuvilov. Boundary controllability of parabolic equations. Russian Acad. Sci. Sb. Math., 186:109–132, 1995. (In Russian).Google Scholar
- 27.O. Yu. Imanuvilov. Remarks on exact controllability for the Navier–Stokes equations. ESAIM Control Optim. Calc. Var., 6:39–72, 2001.Google Scholar
- 28.J. Le Rousseau and L. Robbiano. Carleman estimate for elliptic operators with coefficients with jumps at an interface in arbitrary dimension and application to the null controllability of linear parabolic equations. Arch. Rational Mech. Anal., 2009. To appear.Google Scholar
- 29.G. Lebeau and L. Robbiano. Contrôle exact de l’équation de la chaleur. Comm. Partial Differential Equations, 20:335–356, 1995.zbMATHCrossRefMathSciNetGoogle Scholar
- 30.J.-L. Lions. Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués, Tomes 1 & 2. Recherches en Mathématiques Appliquées, 8 & 9. Masson, Paris, 1988.Google Scholar
- 31.J.-L. Lions. Exact controllability, stabilizability and perturbations for distributed systems. SIAM Review, 30:1–68, 1988.zbMATHCrossRefMathSciNetGoogle Scholar
- 32.J. Málek, J. Nec̆as, M. Rokyta, and M. Ru\(\check{\mathrm{z}}\)ic̆ka. Weak and measure-valued solutions to evolutionary PDEs, volume 13 of Applied Mathematics and Mathematical Computation. Chapman & Hall, London, 1996.Google Scholar
- 33.D. L. Russell. A unified boundary controllability theory for hyperbolic and parabolic partial differential equations. Studies in Appl. Math., 52:189–211, 1973.zbMATHMathSciNetGoogle Scholar
- 34.D. L. Russell. Controllability and stabilizability theory for linear partial differential equations. Recent progress and open questions. SIAM Review, 20:639–739, 1978.Google Scholar
- 35.E. Zuazua. Exact boundary controllability for the semilinear wave equation. In H. Brezis and J.-L. Lions, editors, Nonlinear Partial Differential Equations and their Applications, Vol. X, pages 357–391. Pitman, New York, 1991.Google Scholar
Copyright information
© Springer Science+Business Media B.V. 2010