Advertisement

Remarks on the Controllability of Some Parabolic Equations and Systems

  • Enrique Fernández-CaraEmail author
Chapter
  • 1.7k Downloads
Part of the Computational Methods in Applied Sciences book series (COMPUTMETHODS, volume 15)

Summary

This paper is devoted to present a review of recent results concerning the controllability of some (linear and nonlinear) parabolic systems. Among others, we will consider the classical heat equation, the Burgers, Navier–Stokes and Boussinesq equations, etc.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Alessandrini and L. Escauriaza. Null-controllability of one-dimensional parabolic equations. ESAIM Control Optim. Calc. Var., 14(2):284–293, 2007.CrossRefMathSciNetGoogle Scholar
  2. 2.
    F. Ammar-Khodja, A. Benabdallah, C. Dupaix, and M. González-Burgos. A Kalman rank condition for the localized distributed controllability of a class of linear parabolic systems. J. Evol. Equ., 2009. DOI 10.1007/s00028-009-0008-8.Google Scholar
  3. 3.
    S. Anita and D. Tataru. Null controllability for the dissipative semilinear heat equation. Appl. Math. Optim., 46:97–105, 2002.zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    V. Barbu, T. Havarneanu, C. Popa, and S. S. Sritharan. Exact controllability for the magnetohydrodynamic equations. Comm. Pure Appl. Math., 56:732–783, 2003.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    H. Bellout, F. Bloom, and J. Nec̆as. Young measure-valued solutions for non-Newtonian incompressible fluids. Comm. Partial Differential Equations, 19 (11–12):1763–1803, 1994.Google Scholar
  6. 6.
    J. M. Coron. On the controllability of the 2-D incompressible Navier–Stokes equations with the Navier slip boundary conditions. ESAIM Control Optim. Calc. Var., 1:35–75, 1995/96.Google Scholar
  7. 7.
    J. M. Coron. Control and nonlinearity, volume 136 of Mathematical surveys and monographs. American Mathematical Society, Providence, RI, 2007.zbMATHGoogle Scholar
  8. 8.
    C. Fabre. Uniqueness results for Stokes equations and their consequences in linear and nonlinear control problems. ESAIM Contrôle Optim. Calc. Var., 1:267–302, 1995/96.Google Scholar
  9. 9.
    C. Fabre, J.-P. Puel, and E. Zuazua. Approximate controllability of the semilinear heat equation. Proc. Roy. Soc. Edinburgh Sect. A, 125(1):31–61, 1995.zbMATHMathSciNetGoogle Scholar
  10. 10.
    E. Fernández-Cara, M. González-Burgos, and L. De Teresa. 2009. In preparation.Google Scholar
  11. 11.
    E. Fernández-Cara and S. Guerrero. Global Carleman inequalities for parabolic systems and applications to controllability. SIAM J. Control Optim., 45(4):1399–1446, 2006.CrossRefMathSciNetGoogle Scholar
  12. 12.
    E. Fernández-Cara and S. Guerrero. Local exact controllability of micropolar fluids. J. Math. Fluid Mech., 9(3):419–453, 2007.zbMATHCrossRefMathSciNetADSGoogle Scholar
  13. 13.
    E. Fernández-Cara and S. Guerrero. Null controllability of the Burgers system with distributed controls. Systems Control Lett., 56(5):366–372, 2007.zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    E. Fernández-Cara, S. Guerrero, O. Yu. Imanuvilov, and J.-P. Puel. Local exact controllability of the Navier–Stokes system. J. Math. Pures Appl. (9), 83(12):1501–1542, 2004.Google Scholar
  15. 15.
    E. Fernández-Cara, S. Guerrero, O. Yu. Imanuvilov, and J.-P. Puel. Some controllability results for the n-dimensional Navier–Stokes and Boussinesq systems with n − 1 scalar controls. SIAM J. Control and Optim., 45(1):146–173, 2006.Google Scholar
  16. 16.
    E. Fernández-Cara and E. Zuazua. The cost of approximate controllability for heat equations: The linear case. Adv. Differential Equations, 5(4–6):465–514, 2000.zbMATHMathSciNetGoogle Scholar
  17. 17.
    A. V. Fursikov. Exact boundary zero-controllability of three-dimensional Navier–Stokes equations. J. Dynam. Control Systems, 1(3):325–350, 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    A. V. Fursikov and O. Yu. Imanuvilov. On exact boundary zero-controllability of two-dimensional Navier–Stokes equations. Acta Appl. Math., 37(1–2):67–76, 1994.Google Scholar
  19. 19.
    A. V. Fursikov and O. Yu. Imanuvilov. Controllability of evolution equations. Lecture Notes Series 34, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, 1996.Google Scholar
  20. 20.
    A. V. Fursikov and O. Yu. Imanuvilov. Exact controllability of the Navier–Stokes and Boussinesq equations. Uspekhi Mat. Nauk, 54(3(327)):93–146, 1999. In Russian, translation in Russian Math. Surveys 54(3):565–618, 1999.Google Scholar
  21. 21.
    M. González-Burgos, S. Guerrero, and J. P. Puel. On the exact controllability of the Navier–Stokes and Boussinesq equations. 2009. To appear.Google Scholar
  22. 22.
    S. Guerrero. Local exact controllability to the trajectories of the Boussinesq system. Ann. Inst. H. Poincaré Anal. Non Linéaire, 23(1):29–61, 2006.zbMATHCrossRefMathSciNetADSGoogle Scholar
  23. 23.
    S. Guerrero and O. Yu. Imanuvilov. Remarks on global controllability for the Burgers equation with two control forces. Ann. Inst. H. Poincaré Anal. Non Linéaire, 24(6):897–906, 2007.Google Scholar
  24. 24.
    T. Havarneanu, C. Popa, and S. S. Sritharan. Exact internal controllability for the magnetohydrodynamic equations in multi-connected domains. Adv. Differential Equations, 11(8):893–929, 2006.zbMATHMathSciNetGoogle Scholar
  25. 25.
    T. Havarneanu, C. Popa, and S. S. Sritharan. Exact internal controllability for the two-dimensional magnetohydrodynamic equations. SIAM J. Control Optim., 46(5):1802–1830, 2007.zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    O. Yu. Imanuvilov. Boundary controllability of parabolic equations. Russian Acad. Sci. Sb. Math., 186:109–132, 1995. (In Russian).Google Scholar
  27. 27.
    O. Yu. Imanuvilov. Remarks on exact controllability for the Navier–Stokes equations. ESAIM Control Optim. Calc. Var., 6:39–72, 2001.Google Scholar
  28. 28.
    J. Le Rousseau and L. Robbiano. Carleman estimate for elliptic operators with coefficients with jumps at an interface in arbitrary dimension and application to the null controllability of linear parabolic equations. Arch. Rational Mech. Anal., 2009. To appear.Google Scholar
  29. 29.
    G. Lebeau and L. Robbiano. Contrôle exact de l’équation de la chaleur. Comm. Partial Differential Equations, 20:335–356, 1995.zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    J.-L. Lions. Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués, Tomes 1 & 2. Recherches en Mathématiques Appliquées, 8 & 9. Masson, Paris, 1988.Google Scholar
  31. 31.
    J.-L. Lions. Exact controllability, stabilizability and perturbations for distributed systems. SIAM Review, 30:1–68, 1988.zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    J. Málek, J. Nec̆as, M. Rokyta, and M. Ru\(\check{\mathrm{z}}\)ic̆ka. Weak and measure-valued solutions to evolutionary PDEs, volume 13 of Applied Mathematics and Mathematical Computation. Chapman & Hall, London, 1996.Google Scholar
  33. 33.
    D. L. Russell. A unified boundary controllability theory for hyperbolic and parabolic partial differential equations. Studies in Appl. Math., 52:189–211, 1973.zbMATHMathSciNetGoogle Scholar
  34. 34.
    D. L. Russell. Controllability and stabilizability theory for linear partial differential equations. Recent progress and open questions. SIAM Review, 20:639–739, 1978.Google Scholar
  35. 35.
    E. Zuazua. Exact boundary controllability for the semilinear wave equation. In H. Brezis and J.-L. Lions, editors, Nonlinear Partial Differential Equations and their Applications, Vol. X, pages 357–391. Pitman, New York, 1991.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Dpto. E.D.A.N.University of SevillaSevillaSpain

Personalised recommendations