A Novel Approach to Modeling Coronary Stents Using a Slender Curved Rod Model: A Comparison Between Fractured Xience-Like and Palmaz-Like Stents

  • Josip TambačaEmail author
  • Sunčica Čanić
  • David Paniagua
Part of the Computational Methods in Applied Sciences book series (COMPUTMETHODS, volume 15)


We present a novel mathematical model to study the mechanical properties of endovascular stents in their expanded state. The model is based on the theory of slender curved rods. Stent struts are modeled as linearly elastic curved rods that satisfy the kinematic and dynamic contact conditions at the vertices where the struts meet. A weak formulation for the stent problem is defined and a Finite Element Method for a numerical computation of its solution is used to study mechanical properties of two commonly used coronary stents (Palmaz-like and Xience-like stent) in their expanded, fractured state. A simple fracture (separation), corresponding to one stent strut being disconnected from one vertex in a stent, was considered. Our results show a drastic difference in the response of the two stents to the physiologically reasonable uniform compression and bending forces.


Radial Displacement Coronary Stents Stent Strut Stent Fracture Uniform Compression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. L. Berry, A. Santamarina, J. E. Moore, Jr., S. Roychowdhury, and W. D. Routh. Experimental and computational flow evaluation of coronary stents. Ann. Biomed. Eng., 28(4):386–398, 2000.CrossRefGoogle Scholar
  2. 2.
    S. Canic, C. J. Hartley, D. Rosenstrauch, J. Tambaca, G. Guidoboni, and A. Mikelic. Blood flow in compliant arteries: An effective viscoelastic reduced model, numerics and experimental validation. Ann. Biomed. Eng., 34(4):575–592, 2006.CrossRefGoogle Scholar
  3. 3.
    A. Carter. Stent strut fracture: Seeing is believing. Catheter. Cardiovasc. Interv., 71(5):619–620, 2008.CrossRefGoogle Scholar
  4. 4.
    P. G. Ciarlet. Mathematical Elasticity. Volume I: Three-Dimensional Elasticity. North-Holland, Amsterdam, 1988.Google Scholar
  5. 5.
    C. Dumoulin and B. Cochelin. Mechanical behavior modeling of balloon-expandable stents. J. Biomech., 33(11):1461–1470, 2000.CrossRefGoogle Scholar
  6. 6.
    A. O. Frank, P. W. Walsh, and J. E. Moore, Jr. Computational fluid dynamics and stent design. Artificial Organs, 26(7):614–621, 2002.CrossRefGoogle Scholar
  7. 7.
    Y. C. Fung. Biomechanics: Mechanical properties of living tissues. Springer, second edition, 1993.Google Scholar
  8. 8.
    G. Hausdorf. Mechanical and biophysical aspects of stents. In P. Syamasundar Rao and Morton J. Kern, editors, Catheter Based Devices for the Treatment of Non-coronary Cardiovascular Diseases in Adults and Children, Philadelphia, PA, 2003. Lippincott Williams & Wilkins.Google Scholar
  9. 9.
    V. Hoang. Stent design and engineered coating over flow removal tool. Team #3 (Vimage), 10/29/04.Google Scholar
  10. 10.
    M. Jurak and J. Tambača. Derivation and justification of a curved rod model. Math. Models Methods Appl. Sci., 9(7):991–1014, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    M. Jurak and J. Tambača. Linear curved rod model. General curve. Math. Models Methods Appl. Sci., 11(7):1237–1252, 2001.Google Scholar
  12. 12.
    K. W. Lau, A. Johan, U. Sigwart, and J. S. Hung. A stent is not just a stent: stent construction and design do matter in its clinical performance. Singapore Med. J., 45(7):305–311, 2004.Google Scholar
  13. 13.
    A. N. Makaryus, L. Lefkowitz, and A. D. K. Lee. Coronary artery stent fracture. Int. J. Cardiovasc. Imaging, 23:305–309, 2007.CrossRefGoogle Scholar
  14. 14.
    D. R. McClean and N. L. Eiger. Stent design: Implications for restenosis. Rev. Cardiovasc. Med., 3(5):S16–22, 2002.Google Scholar
  15. 15.
    F. Migliavacca, L. Petrini, M. Colombo, F. Auricchio, and R. Pietrabissa. Mechanical behavior of coronary stents investigated through the finite element method. J. Biomech., 35(6):803–811, 2002.CrossRefGoogle Scholar
  16. 16.
    J. E. Moore Jr. and J. L. Berry. Fluid and solid mechanical implications of vascular stenting. Ann. Biomed. Eng., 30(4):498–508, 2002.CrossRefGoogle Scholar
  17. 17.
    A. C. Morton, D. Crossman, and J. Gunn. The influence of physical stent parameters upon restenosis. Pathologie Biologie, 52:196–205, 2004.CrossRefGoogle Scholar
  18. 18.
    F. Shaikh, R. Maddikunta, M. Djelmami-Hani, J. Solis, S. Allaqaband, and T. Bajwa. Stent fracture, an incidental finding or a significant marker of clinical in-stent restenosis. Catheter. Cardiovasc. Interv., 71(5):614–618, 2008.CrossRefGoogle Scholar
  19. 19.
    J. Tambača. A model of irregular curved rods. In Z. Drmač, V. Hari, L. Sopta, Z. Tutek, and K. Veselić, editors, Proceedings of the Conference on Applied Mathematics and Scientific Computing (Dubrovnik, 2001), pages 289–299. Kluwer, 2003.Google Scholar
  20. 20.
    J. Tambača. A numerical method for solving the curved rod model. ZAMM Z. Angew. Math. Mech., 86(3):210–221, 2006.zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    J. Tambača, M. Kosor, S. Čanić, and D. Paniagua. Mathematical modeling of vascular stents. SIAM J. Appl. Math.Under revision.Google Scholar
  22. 22.
    L. H. Timmins, M. R. Moreno, C. A. Meyer, J. C. Criscione, A. Rachev, and J. E. Moore, Jr. Stented artery biomechanics and device design optimization. Med. Bio. Eng. Comput., 45(5):505–513, 2007.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Josip Tambača
    • 1
    Email author
  • Sunčica Čanić
    • 2
  • David Paniagua
    • 3
  1. 1.Department of MathematicsUniversity of ZagrebZagrebCroatia
  2. 2.Department of MathematicsUniversity of HoustonHoustonUSA
  3. 3.Baylor College of MedicineTexas Heart Institute at St Luke’s Episcopal HospitalHoustonUSA

Personalised recommendations