Advertisement

Exact Controllability of the Time Discrete Wave Equation: A Multiplier Approach

  • Xu ZhangEmail author
  • Chuang Zheng
  • Enrique Zuazua
Chapter
Part of the Computational Methods in Applied Sciences book series (COMPUTMETHODS, volume 15)

Abstract

n this paper we summarize our recent results on the exact boundary controllability of a trapezoidal time discrete wave equation in a bounded domain. It is shown that the projection of the solution in an appropriate space in which the high frequencies have been filtered is exactly controllable with uniformly bounded controls (with respect to the time-step). By classical duality arguments, the problem is reduced to a boundary observability inequality for a time-discrete wave equation. Using multiplier techniques the uniform observability property is proved in a class of filtered initial data. The optimality of the filtering parameter is also analyzed.

Key words

Exact controllability observability time discretization wave equation multiplier technique filtering. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Bardos, G. Lebeau, and J. Rauch. Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim., 30(5):1024–1065, 1992.zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    S. Ervedoza, C. Zheng, and E. Zuazua. On the observability of time-discrete linear conservative systems. J. Funct. Anal., 254(12):3037–3078, 2008.zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    G. Glowinski. Ensuring well-posedness by analogy: Stokes problem and boundary control for the wave equation. J. Comput. Phys., 103(2):189–221, 1992.zbMATHCrossRefMathSciNetADSGoogle Scholar
  4. 4.
    R. Glowinski, C. H. Li, and J.-L. Lions. A numerical approach to the exact boundary controllability of the wave equation. I. Dirichlet controls: description of the numerical methods. Japan J. Appl. Math., 7(1):1–76, 1990.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    J. A. Infante and E. Zuazua. Boundary observability for the space semi-discretizations of the 1-D wave equation. M2AN Math. Model. Numer. Anal., 33(2):407–438, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    J.-L. Lions. Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués, Vol. 1. Masson, Paris, 1988.Google Scholar
  7. 7.
    F. Macià. The effect of group velocity in the numerical analysis of control problems for the wave equation. In Mathematical and Numerical Aspects of Wave Propagation – WAVES 2003, pages 195–200, Berlin, 2003. Springer.Google Scholar
  8. 8.
    M. Negreanu and E. Zuazua. Convergence of a multigrid method for the controllability of a 1-d wave equation. C. R. Math. Acad. Sci. Paris, 338(5):413–418, 2004.zbMATHMathSciNetGoogle Scholar
  9. 9.
    A. Osses. A rotated multiplier applied to the controllability of waves, elasticity, and tangential Stokes control. SIAM J. Control Optim., 40(3):777–800, 2001.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    K. Ramdani, T. Takahashi, G. Tenenbaum, and M. Tucsnak. A spectral approach for the exact observability of infinite-dimensional systems with skew-adjoint generator. J. Funct. Anal., 226(1):193–229, 2005.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    J. W. Thomas. Numerical partial differential equations: Finite difference methods. Springer, Berlin, 1995.zbMATHGoogle Scholar
  12. 12.
    L. N. Trefethen. Group velocity in finite difference schemes. SIAM Rev., 24(2):113–136, 1982.zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    X. Zhang. Explicit observability estimate for the wave equation with potential and its application. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 456(1997):1101–1115, 2000.zbMATHCrossRefMathSciNetADSGoogle Scholar
  14. 14.
    X. Zhang, C. Zheng, and E. Zuazua. Time discrete wave equations: Boundary observability and control. Discrete Contin. Dyn. Syst., 23(1–2):571–604, 2009.MathSciNetGoogle Scholar
  15. 15.
    C. Zheng. Controllability of the time discrete heat equation. Asymptot. Anal., 59(3–4):139–177, 2008.zbMATHMathSciNetGoogle Scholar
  16. 16.
    E. Zuazua. Boundary observability for the finite-difference space semi-discretizations of the 2-D wave equation in the square. J. Math. Pures Appl., 78(5):523–563, 1999.zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    E. Zuazua. Propagation, observation, and control of waves approximated by finite difference methods. SIAM Rev., 47(2):197–243, 2005.zbMATHCrossRefMathSciNetADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Academy of Mathematics and Systems SciencesChinese Academy of SciencesBeijingChina
  2. 2.School of Mathematical SciencesBeijing Normal UniversityBeijingChina
  3. 3.Basque Center for Applied Mathematics, Bizkaia Technology Park DerioBasque Country, Spain

Personalised recommendations