Guaranteed Error Bounds for Conforming Approximations of a Maxwell Type Problem
Chapter
First Online:
- 4 Citations
- 1.7k Downloads
Abstract
This paper is concerned with computable error estimates for approximations to a boundary-value problem where μ > 0 and κ are bounded functions. We derive a posteriori error estimates valid for any conforming approximations of the considered problems. For this purpose, we apply a new approach that is based on certain transformations of the basic integral identity. The consistency of the derived a posteriori error estimates is proved and the corresponding computational strategies are discussed.
$$\mathrm{curl}\ {\mu }^{-1}\mathrm{curl}\ u + {\kappa }^{2}u = j\quad \textrm{ in }\Omega ,$$
Key words
A posteriori estimates the Maxwell equation guaranteed bounds of approximation errorsPreview
Unable to display preview. Download preview PDF.
References
- 1.R. Beck, R. Hiptmair, R. H. W. Hoppe, and B. Wohlmuth. Residual based a posteriori error estimators for eddy current computation. M2AN Math. Model. Numer. Anal., 34(1):159–182, 2000.zbMATHCrossRefMathSciNetGoogle Scholar
- 2.D. Braess and Schöberl. Equilibrated residual error estimator for Maxvell’s equation. To appear.Google Scholar
- 3.G. Duvaut and J.-L. Lions. Les inéquations en mécanique et en physique. Dunod, Paris, 1972.zbMATHGoogle Scholar
- 4.V. Girault and P.-A. Raviart. Finite element methods for Navier–Stokes equations. Theory and algorithms. Springer, Berlin, 1986.Google Scholar
- 5.G. Haase, M. Kuhn, and U. Langer. Parallel multigrid 3D Maxwell solvers. Parallel Comput., 27(6):761–775, 2001.zbMATHCrossRefMathSciNetGoogle Scholar
- 6.R. Hiptmair. Multigrid method for Maxwell’s equations. SIAM J. Numer. Anal., 36(1):204–225, 1999.CrossRefMathSciNetGoogle Scholar
- 7.P. Houston, I. Perugia, and D. Schötzau. An a posteriori error indicator for discontinuous Galerkin discretizations of H(curl)-elliptic partial differential equations. IMA J. Numer. Anal., 27(1):122–150, 2007.zbMATHCrossRefMathSciNetGoogle Scholar
- 8.P. Monk. Finite element methods for Maxwell’s equations. Oxford University Press, New York, 2003.zbMATHCrossRefGoogle Scholar
- 9.J.-C. Nédélec. A new family of mixed finite elements in R 3. Numer. Math., 50(1):57–81, 1986.zbMATHCrossRefMathSciNetGoogle Scholar
- 10.P. Neittaanmäki and S. Repin. Reliable methods for computer simulation. Error control and a posteriori estimates. Elsevier, Amsterdam, 2004.Google Scholar
- 11.O. Pironneau. Computer solutions of Maxwell’s equations in homogeneous media. Internat. J. Numer. Methods Fluids, 43(8):823–838, 2003. ECCOMAS Computational Fluid Dynamics Conference, Part III (Swansea, 2001).zbMATHMathSciNetADSGoogle Scholar
- 12.S. Repin. A posteriori error estimation for nonlinear variational problems by duality theory. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 243:201–214, 1997. Translation in J. Math. Sci. (New York) 99(1):927–935, 2000.Google Scholar
- 13.S. Repin. A posteriori error estimation for variational problems with uniformly convex functionals. Math. Comp., 69(230):481–500, 2000.zbMATHCrossRefMathSciNetADSGoogle Scholar
- 14.S. Repin. On the derivation of functional a posteriori estimates from integral identities. In W. Fitzgibbon, R. Hoppe, J. Periaux, O. Pironneau, and Y. Vassilevski, editors, Advances in Numerical Mathematics. Proceedings of International Conference on the Occasion of the 60th birthday of Yu. A. Kuznetsov (Moscow, 2005), pages 217–242, Moscow and Houston, TX, 2006. Institute of Numerical Mathematics of Russian Academy of Sciences and Department of Mathematics, University of Houston.Google Scholar
- 15.S. Repin. Functional a posteriori estimates for Maxwell’s equation. J. Math. Sci. (N. Y.), 142(1):1821–1827, 2007.CrossRefMathSciNetzbMATHGoogle Scholar
- 16.S. Repin. A posteriori error estimation methods for partial differential equations. In M. Kraus and U. Langer, editors, Lectures on Advanced Computational Methods in Mechanics, pages 161–226. Walter de Gruyter, Berlin, 2007.Google Scholar
- 17.S. Repin and S. Sauter. Functional a posteriori estimates for the reaction-diffusion problem. C. R. Math. Acad. Sci. Paris, 343(5):349–354, 2006.zbMATHMathSciNetGoogle Scholar
- 18.J. Saranen. On an inequality of Friedrichs. Math. Scand., 51(2):310–322, 1982.zbMATHMathSciNetGoogle Scholar
Copyright information
© Springer Science+Business Media B.V. 2010