Advertisement

Two-Sided Estimates of the Solution Set for the Reaction–Diffusion Problem with Uncertain Data

  • Olli MaliEmail author
  • Sergey Repin
Chapter
Part of the Computational Methods in Applied Sciences book series (COMPUTMETHODS, volume 15)

Abstract

We consider linear reaction–diffusion problems with mixed Dirichlét–Neumann–Robin conditions. The diffusion matrix, reaction coefficient, and the coefficient in the Robin boundary condition are defined with an uncertainty which allow bounded variations around some given mean values. A solution to such a problem cannot be exactly determined (it is a function in the set of “possible solutions” formed by generalized solutions related to possible data). The problem is to find parameters of this set. In this paper, we show that computable lower and upper bounds of the diameter (or radius) of the set can be expressed throughout problem data and parameters that regulate the indeterminacy range. Our method is based on using a posteriori error majorants and minorants of the functional type (see [5, 6]), which explicitly depend on the coefficients and allow to obtain the corresponding lower and upper bounds by solving the respective extremal problems generated by indeterminacy of coefficients.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Hlaváček, J. Chleboun, and I. Babuška. Uncertain input data problems and the worst scenario method. Elsevier, Amsterdam, 2004.zbMATHGoogle Scholar
  2. 2.
    O. Mali and S. Repin. Estimates of the indeterminacy set for elliptic boundary-value problems with uncertain data. In K. Runesson and P. Diez, editors, Adaptive Modeling and Simulation 2007, pages 158–161, Barcelona, 2007. CIMNE.Google Scholar
  3. 3.
    O. Mali and S. Repin. Estimates of the indeterminacy set for elliptic boundary-value problems with uncertain data. J. Math. Sci. (N. Y.), 150(1):1869–1874, 2008.CrossRefMathSciNetGoogle Scholar
  4. 4.
    S. G. Mikhlin. Variational methods in mathematical physics. Macmillan, New York, 1964.zbMATHGoogle Scholar
  5. 5.
    P. Neittaanmäki and S. Repin. Reliable methods for computer simulation. Error control and a posteriori estimates. Elsevier, Amsterdam, 2004.Google Scholar
  6. 6.
    S. Repin. A posteriori error estimation for variational problems with uniformly convex functionals. Math. Comp., 69(230):481–500, 2000.zbMATHCrossRefMathSciNetADSGoogle Scholar
  7. 7.
    S. Repin. Two-sided estimates of deviation from exact solutions of uniformly elliptic equations. In Proc. of the St. Petersburg Mathematical Society, Vol. IX, pages 143–171, 2001. Translation in Amer. Math. Soc. Transl. Ser. 2, 209, Amer. Math. Soc., Providence, RI, 2003.Google Scholar
  8. 8.
    S. Repin. A posteriori error estimates taking into account indeterminacy of the problem data. Russian J. Numer. Anal. Math. Modelling, 18(6):507–519, 2003.zbMATHMathSciNetGoogle Scholar
  9. 9.
    S. Repin and S. Sauter. Functional a posteriori estimates for the reaction-diffusion problem. C. R. Math. Acad. Sci. Paris, 343(5):349–354, 2006.zbMATHMathSciNetGoogle Scholar
  10. 10.
    S. Repin and R. Stenberg. A posteriori error estimates for the generalized Stokes problem. J. Math. Sci. (N. Y.), 142(1):1828–1843, 2007.CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Mathematical Information TechnologyUniversity of JyväskyläJyväskyläFinland
  2. 2.V. A. Steklov Institute of Mathematics in St. PetersburgSt. PetersburgRussia

Personalised recommendations