Numerical Methods for Ferromagnetic Plates

  • Michel FlückEmail author
  • Thomas Hofer
  • Ales Janka
  • Jacques Rappaz
Part of the Computational Methods in Applied Sciences book series (COMPUTMETHODS, volume 15)


We present two numerical methods for the simulation of ferromagnetic phenomenons in a metallic plate, with or without holes. First we briefly recall the physical model we use for describing the ferromagnetic phenomenon. This model is based on the use of a scalar potential while other models rather use a vector potential as in [1] or [2]. Next we present the discretization methods we use. We then apply these methods on the simple test-case of a thin ferromagnetic plate placed in front of a rectilineal electric conductor. We show the various obtained results: magnetic field on a line perpendicular to the plate and relative permeability on a given line in the plate. Finally we illustrate our results with an industrial device.


Relative Permeability Element Space Ferromagnetic Material Tetrahedral Mesh Steel Shell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O. Bíró and K. Preis. On the use of magnetic vector potential in the finite element analysis of three-dimensional eddy currents. IEEE Trans. Magn., 25(4):3145–3159, 1989.CrossRefADSGoogle Scholar
  2. 2.
    O. Bíró, K. Preis, and K. R. Richter. On the use of the magnetic vector potential in the nodal and edge finite element analysis of 3D magnetostatic problems. IEEE Trans. Magn., 32(3):651–654, 1996.CrossRefADSGoogle Scholar
  3. 3.
    J. Descloux, M. Flueck, and M. V. Romerio. A problem of magnetostatics related to thin plates. RAIRO Modél. Math. Anal. Numér., 32(7):859–876, 1998.zbMATHMathSciNetGoogle Scholar
  4. 4.
    M. Flück, T. Hofer, A. Janka, and J. Rappaz. Numerical methods for ferromagnetic plates. Research report 08.2007, Institute of Analysis and Scientific Computing (IACS), EPFL, 2007.Google Scholar
  5. 5.
    A. Masserey, J. Rappaz, R. Rozsnyo, and M. Swierkosz. Numerical integration of the three-dimensional Green kernel for an electromagnetic problem. J. Comput. Phys., 205(1):48–71, 2005.zbMATHCrossRefMathSciNetADSGoogle Scholar
  6. 6.
    A. Masud and T. J. R. Hughes. A stabilized mixed finite element method for Darcy flow. Comput. Methods Appl. Mech. Engrg., 191(39–40):4341–4370, 2002.zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    J.-C. Nédélec. Acoustic and electromagnetic equations. Integral representations for harmonic problems, volume 144 of Applied Mathematical Sciences. Springer, New York, 2001.Google Scholar
  8. 8.
    J. Rappaz. About the ferromagnetic effects. Some mathematical results. Research report, Institute of Analysis and Scientific Computing (IACS), EPFL. To appear.Google Scholar
  9. 9.
    P. Vaněk, M. Brezina, and J. Mandel. Convergence of algebraic multigrid based on smoothed aggregation. Numer. Math., 88(3):559–579, 2001.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Michel Flück
    • 1
    Email author
  • Thomas Hofer
    • 1
  • Ales Janka
    • 1
  • Jacques Rappaz
    • 1
  1. 1.École Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations