Analytic Bounds for Diagonal Elements of Functions of Matrices

  • Gérard MeurantEmail author
Part of the Computational Methods in Applied Sciences book series (COMPUTMETHODS, volume 15)


This paper is concerned with computing analytic lower and upper bounds for diagonal elements of f(A) where Ais a real symmetric matrix and fis a smooth function. The mathematical tools to be used are Riemann–Stieltjes integrals, orthogonal polynomials, Gauss quadrature and the Lanczos algorithm.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. J. Davis and P. Rabinowitz. Methods of numerical integration. Academic Press, Orlando, FL, second edition, 1984.zbMATHGoogle Scholar
  2. 2.
    W. Gautschi. Orthogonal polynomials: computation and approximation. Oxford University Press, New York, 2004.zbMATHGoogle Scholar
  3. 3.
    G. H. Golub and G. Meurant. Matrices, moments and quadrature. In D. F. Griffiths and G. A. Watson, editors, Numerical Analysis 1993 (Dundee, 1993), volume 303 of Pitman Res. Notes Math. Ser., pages 105–156, Harlow, 1994. Longman Sci. Tech.Google Scholar
  4. 4.
    G. H. Golub and C. F. Van Loan. Matrix computations. Johns Hopkins University Press, Baltimore, MD, third edition, 1996.zbMATHGoogle Scholar
  5. 5.
    G. H. Golub and J. H. Welsch. Calculation of Gauss quadrature rules. Math. Comp., 23:221–230, 1969.zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.ParisFrance

Personalised recommendations