Skip to main content

Understanding Slow Deformation Before Dynamic Failure

  • Chapter
  • First Online:
Book cover Geophysical Hazards

Abstract

Slow deformation and fracturing have been shown to be leading mechanisms towards failure, marking earthquake ruptures, flank eruption onsets and landslide episodes. The common link among these processes is that populations of microcracks interact, grow and coalesce into major fractures. We present (a) two examples of multidisciplinary field monitoring of characteristic “large scale” signs of impending deformation from different tectonic setting, i.e. the Ruinon landslide (Italy) and Stromboli volcano (Italy) (b) the kinematic features of slow stress perturbations induced by fluid overpressures and relative modelling; (c) experimental rock deformation laboratory experiments and theoretical modelling investigating slow deformation mechanisms, such stress corrosion crack growth. We propose an interdisciplinary unitary and integrated approach aimed to:

(1) transfer of knowledge between specific fields, which up to now aimed at solve a particular problem; (2) quantify critical damage thresholds triggering instability onset; (3) set up early warning models for forecasting the time of rupture with application to volcanology, seismology and landslide risk prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acocella V, Neri M, Scarlato P (2006) Understanding shallow magma emplacement at volcanoes: orthogonal feeder dikes during the 2002–2003 Stromboli (Italy) eruption. Geophys Res Lett. DOI:10.1029/2006GL026862

    Google Scholar 

  • Allard P, Carbonelle J, Metrich N, Loyer H, Zattwoog P (1994) Sulfur output and magma degassing budget of Stromboli volcano. Nature 368:326–330

    Article  Google Scholar 

  • Amitrano D, Helmstetter A (2006) Brittle creep damage and time to failure in rocks. J Geophys Res. DOI:10.1029/2005JB004252

    Google Scholar 

  • Anderson OL, Grew PC (1977) Stress corrosion theory of crack propagation with applications to geophysics. Rev Geophys 15:77–104

    Article  Google Scholar 

  • Andrade EN, Randall RFY (1949) The Rehbinder effect. Nature 164:1127

    Article  Google Scholar 

  • Atkinson BK (1984) Subcritical crack growth in geological materials. J Geophys Res 89:4077–4114

    Article  Google Scholar 

  • Atkinson BK, Meredith PG (1987) The theory of subcritical crack growth with applications to minerals and rocks. In: Atkinson BK (ed) Fracture Mechanics of Rock. Academic Press, London

    Google Scholar 

  • Baldi P, Coltelli M, Fabris M, Marsella M, Tommasi P (2008) High precision photogrammetry for monitoring the evolution of the NW flank of Stromboli volcano during and after the 2002–2003 eruption. Bull Volcanol 70:703–715

    Article  Google Scholar 

  • Barberi F, Rosi M, Sodi A (1993) Volcanic hazard assessment at Stromboli based on review of historical data. Acta Volcanol 3:173–187

    Google Scholar 

  • Baud P, Meredith PG (1997) Damage accumulation during triaxial creep of Darley Dale sandstone from pore volumometry and acoustic emission. Int J Rock Mech Min Sci 34:3–4

    Article  Google Scholar 

  • Beer T (2008) Minimising risk maximising awareness: the hazards theme of the international year of the planet Earth. 33IGC Oslo 2008 PEH01204L 105 Abstract volume

    Google Scholar 

  • Benson PM, Thompson AB, Meredith PG, Vinciguerra S, Young RP (2007) Imaging slow failure in triaxially deformed Etna basalt using 3D acoustic-emission location and X-ray computed tomography. Geophys Res Lett. DOI:10.1029/2006GL028721

    Google Scholar 

  • Bonaccorso A, Calvari S, Garfı’ G, Lodato L, Patane D (2003) Dynamics of the December 2002 flank failure and tsunami at Stromboli volcano inferred by volcanological and geophysical observations. Geophys Res Lett. DOI:10.1029/2003GL017702

    Google Scholar 

  • Brehm DJ, Braile LW (1999) Intermediate-term earthquake prediction using the modified time-to-failure method in South California. Bull Seis Soc Am 89:275–293

    Google Scholar 

  • Brodsky EE, Karakostas V, Kanamori H (2000) A new observation of dynamically triggered regional seismicity: earthquakes in Greece following the August 1999 Izmit Turkey earthquake. Geophys Res Lett 27:2741–2744

    Article  Google Scholar 

  • Chouet B, Dawson P, Ohminato T, Martini M, Saccorotti G, Giudicepietro F, De Luca G, Milana G, Scarpa R (2003) Source mechanisms of explosions at Stromboli Volcano Italy determined from moment-tensor inversions of very-long-period data. J Geophys Res. DOI:10.1029/2002JB001919

    Google Scholar 

  • Costin LS (1987) Time-dependent deformation and failure. In: Atkinson BK (ed) Fracture Mechanics of Rock. Academic Press, London

    Google Scholar 

  • Cruden DM (1974) Static fatigue of brittle rock under uniaxial compression. Int J Rock Mech Min Sci 11:67–73

    Google Scholar 

  • Cruden DM (1991) A simple definition of a landslide. Bull Int Assoc Eng Geol 43:27–29

    Article  Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslides types and processes. In: Land-slides: Investigation and Mitigation. Transportation Research Board, National Research Council, National Academies Press, Washington DC

    Google Scholar 

  • Di Giovambattista R, Tyupkin YS (2001) An analysis of the process of acceleration of seismic energy emission in laboratory experiments on destruction of rocks and before strong earthquakes on Kamchatka and in Italy. Tectonophysics 338: 339–351

    Article  Google Scholar 

  • Economides MJ, Nolte KG (2003) Reservoir Stimulation. Wiley, Chichester

    Google Scholar 

  • Falsaperla S, Neri M, Pecora E, Spampinato S (2006) Multidisciplinary study of flank instability phenomena at Stromboli volcano Italy. Geophys Res Lett. DOI:10.1029/2006GL025940

    Google Scholar 

  • Griggs D (1939) Creep of Rocks. J Geol 47:225–251

    Article  Google Scholar 

  • Griggs D (1940) Experimental flow of rocks under conditions favouring recrystallization. Bull Seis Soc Am 51:1001–1022

    Google Scholar 

  • Heap M, Baud JP, Meredith PG, Bell AF, Main IG (2009) Time-dependent brittle creep in Darley Dale sandstone. J Geophys Res 114, B07203, doi:10.1029/2008JB006212.

    Google Scholar 

  • Jaeger JN, Cook GW, Zimmerman R (2007) Fundamentals in Rock Mechanics (4th Edition). Blackwell Publishing, London

    Google Scholar 

  • Kaieda H, Kiho K, Motojima I (1993) Multiple fracture creation for hot dry rock development. Trends Geophy Res 2:127–139

    Google Scholar 

  • Kaieda H, Sasaki S (1998) Development of fracture evaluation methods for Hot Dry Rock geothermal power – Ogachi reservoir evaluation by the AE method. CRIEPI report U97107 (in Japanese with English abstract)

    Google Scholar 

  • Kilburn CRJ (2003) Multiscale fracturing as a key to forecasting volcanic eruptions. J Volcanol Geotherm Res 125:271–289

    Article  Google Scholar 

  • Kilburn CRJ, Voight B (1998) Slow rock fracture as eruption precursor at Soufriere Hills volcano: Montserrat. Geophys Res Lett 25:3665–3668

    Article  Google Scholar 

  • Kranz R, Scholz CH (1977) Critical dilatant volume of rocks at the onset of tertiary creep. J Geophys Res 82:4893–4898

    Article  Google Scholar 

  • Lawn B (1993) Fracture of Brittle Solids. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lockner D (1998) A generalized law for brittle deformation of Westerly granite. J Geophys Res 103:5107–5123

    Article  Google Scholar 

  • Main IG (2000) A damage mechanics model for power-law creep and earthquake aftershock and foreshock sequences. Geophys J Int 142:151–161

    Article  Google Scholar 

  • Main IG, Sammonds PR, Meredith PG (1993) Application of a modified Griffith criterion to the evolution of fractal damage during compressional rock failure. Geophys J Int 115: 367–380

    Article  Google Scholar 

  • Majer EL, Baria R, Stark M, Oates S, Bommer J, Smith B, Asanuma H (2007) Induced seismicity associated with enhanced geothermal systems. Geothermics 36:185–222

    Article  Google Scholar 

  • Orowan E (1944) The fatigue of glass under stress. Nature 154:341–343

    Article  Google Scholar 

  • Ozawa S, Miyazaki S, Hatanaka Y, Imakiire T, Kaidzu M, Murakami M (2003) Characteristic silent earthquakes in the eastern part of the Boso peninsula Central Japan. Geophys Res Lett. DOI:10.1029/2002GL016665

    Google Scholar 

  • Parotidis M, Shapiro SA, Rothert E (2004) Back front of seismicity induced after termination of borehole fluid injection. Geophys Res Lett. DOI:10.1029/2003GL018987

    Google Scholar 

  • Paterson MS, Wong TF (2005) Experimental Rock Deformation – The Brittle Field. Springer, New York

    Google Scholar 

  • Pompilio M (2003) Eruzione Stromboli 2002–2003: Cronologia dell’eruzione localizzazione e migrazione delle bocche eruttive. Internal report Ist Naz di Geofis e Vulcanol Catania, Italy

    Google Scholar 

  • Rehbinder PA (1948) Hardness Reducers in Drilling (Translated from Russian). CSIR, Melbourne

    Google Scholar 

  • Ripepe M, Marchetti E, Ulivieri G, Harris AJL, Dehn J, Burton M, Caltabiano T, Salerno G (2005) Effusive to explosive transition during the 2003 eruption of Stromboli volcano. Geology 33:341–344

    Article  Google Scholar 

  • Rosi M, Bertagnini A, Harris AJL, Pioli L, Pistolesi M, Ripepe M (2006) A case history of paroxysmal explosion at Stromboli: timing and dynamics of the April 5 2003 event. Earth Planet Sci Lett 243:594–606

    Article  Google Scholar 

  • Rosi M, Bertagnini A, Landi P (2000) Onset of the persistent activity at Stromboli volcano (Italy). Bull Volcanol 62: 294–300

    Article  Google Scholar 

  • Rothert E, Shapiro SA (2007) Statistics of fracture strength and fluid – induced microseismicity. J Geophys Res. DOI:10.1029/2005JB003959

    Google Scholar 

  • Rudolf H, Leva D, Tarchi D, Sieber AJ (1999) A mobile and versatile SAR system. Int Geosc Rem Sens Symp, Hamburg

    Google Scholar 

  • Rudolf H, Tarchi D (1999) LISA: the linear SAR instrument. Tech Rep I 99 126 Eur Comm Joint Res Cent, Ispra

    Google Scholar 

  • Rutledge JT, Phillips WS (2003) Hydraulic stimulation of natural fractures as revealed by induced microearthquakes Carthage Cotton Valley gas field east Texas. Geophysics 68:441–452

    Article  Google Scholar 

  • Shapiro SA, Dinske C, Kummerow J (2007) Probability of a given magnitude earthquake induced by a fluid injection. Geophys Res Lett. DOI:10.1029/2007GL031615

    Google Scholar 

  • Shapiro SA, Dinske C, Rothert E (2006a) Hydraulic-fracturing controlled dynamics of microseismic clouds. Geophys Res Lett. DOI:10.1029/2006GL026365

    Google Scholar 

  • Shapiro SA, Kummerow J, Dinske C, Asch G, Rothert E, Erzinger J, Kümpel HJ, Kind R (2006b) Fluid induced seismicity guided by a continental fault: injection experiment of 2004/2005 at the German deep drilling site (KTB). Geophys Res Lett. DOI:10.1029/2005GL024659

    Google Scholar 

  • Shapiro SA, Rothert E, Rath V, Rindschwentner J (2002) Characterization of fluid transport properties of reservoirs using induced microseismicity. Geophysics 67: 212–220

    Article  Google Scholar 

  • Scholz CH (1968) The frequency–magnitude relation of microfracturing in rock and its relation to earthquakes. Bull Seismol Soc Am 58:399–415

    Google Scholar 

  • Tarchi D, Casagli N, Moretti S, Leva D, Sieber AJ (2003) Monitoring landslide displacements using groung-based synthetic aperture radar interferometry: application to the Ruinon landslide in the Italian Alps. J Geophys Res. DOI:10.1029/2002JB002204

    Google Scholar 

  • Terzaghi K (1943) Theoretical Soil Mechanics. John Wiley and Sons, New York

    Book  Google Scholar 

  • Tibaldi A (2001) Multiple sector collapses at Stromboli volcano Italy: how they work. Bull Volcanol 63:112–125

    Article  Google Scholar 

  • Varnes DJ (1989) Predicting earthquakes by analyzing accelerating precursory seismic activity. Pageoph 130:661–686

    Article  Google Scholar 

  • Wawersik WR, Brown WS (1973) Creep Fracture in Rock. Utah University, Department of Mechanical Engineering, Salt Lake City

    Google Scholar 

Download references

Acknowledgments

This work has been supported by the sponsors of the PHASE university consortium project. The NEST Pathfinder Program Triggering Instabilities in Materials and Geosystems (contract NEST-2005-PATH-COM-043386) is acknowledged. The microseismic data from the Ogachi site are courtesy of Dr. H. Kaieda (Central Research Institute of Electric Power Industry, Japan). Help and assistance of Dr. T. Ito (Institute of Fluid Science, Tohoku) is greatly appreciated. This paper is related to the project “Creep” accredited by the Hazards Theme of IYPE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Ventura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this chapter

Cite this chapter

Ventura, G. et al. (2009). Understanding Slow Deformation Before Dynamic Failure. In: Beer, T. (eds) Geophysical Hazards. International Year of Planet Earth. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3236-2_14

Download citation

Publish with us

Policies and ethics