Advertisement

Mathematical Modeling of Dynamics Processes in the Upper Atmosphere and Ionosphere

  • I. V. Karpov
  • G. V. Golubkov
Chapter
Part of the Physics of Earth and Space Environments book series (EARTH)

Abstract

In this chapter, the achievements of the basic researches on the upper atmosphere and ionosphere processes with the mathematical modeling methods are briefly presented. The mathematical problem of the model atmosphere/ionosphere description, the existing global theoretical model of environment, and the results of the investigations as well as their applications have been considered. The numerical experiments using the theoretical models show that the results obtained through model calculations have a good relation with the experimental data on the quiet geophysical conditions. However, under perturbed conditions, the difference in the model results and observations can be more evident. The reasons for such difference can be attributed to the defects of the experimental data on the dynamics of the atmospheric perturbations sources, as well as the imperfection of the theoretical models. In particular, the experimental studies have observed an increase in the microwave radiation (MWR) flows from the upper atmosphere in the geomagnetic and solar-disturbed conditions. This work has focused on the increase in the MWR flows, which can be associated with the appearance of high-disturbed particles (n > 10) in the atmosphere. The correlation between the efficiencies of the chemical reactions and the participation of such particles is one of the directions of improvement of the theoretical models. Furthermore, the approaches to describe the chemistries of high-disturbed particles within the framework of theoretical atmosphere/ionosphere models also discussed.

Keywords

Global theoretical models Ionosphere perturbations Precursors Upper atmosphere 

References

  1. 1.
    Namgaladze, A.A., Yurik, R.Yu.: Mathematical modeling of Earth upper atmosphere perturbations, RFBR, Earth science, 1998Google Scholar
  2. 2.
    Dickinson, R.E., Ridley, E.C., Roble, R.G.: A three dimensional general circulation model of the thermosphere. J. Geophys. Res. 86, 1499–1512 (1981)CrossRefGoogle Scholar
  3. 3.
    Dickinson, R.E., Ridley, E.C., Roble, R.G.: Thermospheric general circulation with coupled dynamics and composition. J. Atmos. Sci. 41, 205–219 (1984)CrossRefGoogle Scholar
  4. 4.
    Fuller-Rowell, T.J., Rees, D.: A three-dimensional, time dependent global model of the thermosphere. J. Atmos. Sci. 37, 2545–2567 (1980)CrossRefGoogle Scholar
  5. 5.
    Namgaladze, A.A., Korenkov, Yu.N., Klimenko, et.al.: Global model of the thermosphere– ionosphere–protonosphere system. Pure Appl. Geophys. 127(2/3), 219–254 (1988)CrossRefGoogle Scholar
  6. 6.
    Roble, R.G., Ridley, E.C., Richmond, A.D., et al.: A coupled thermosphere and ionosphere general circulation model. Geophys. Res. Lett. 15, 1325–1328 (1988)CrossRefGoogle Scholar
  7. 7.
    Fuller-Rowell, T.J., Rees, D., Moffett, R.J., et.al.: A coupled thermosphere ionosphere model, CTIM. In: Schunk, R.W. (ed.) Paeronomical Models of the Ionosphere STEP Handbook, pp. 217–242 (1996)Google Scholar
  8. 8.
    Fuller Rowell, T.J., Rees, D., Quegan, S., et.al.: Simulations of the seasonal and universal time variations of the high latitude thermosphere and ionosphere using a coupled, three-dimensional model. Pure Appl. Geophys. 127(2/3), 189–217 (1988)CrossRefGoogle Scholar
  9. 9.
    Richmond, A.D., Ridley, E.C., Roble, R.G.: A thermosphere ionosphere general circulation model with coupled electrodynamics. Geophys. Res. Lett. 19, 601–604 (1992)CrossRefGoogle Scholar
  10. 10.
    Roble, R.G., Ridley, E.C.: A thermosphere–ionosphere–mesosphere–electrodynamics general circulation model (TIME-GCM): Equinox solar cycle minimum simulations (30–500 km). Geophys. Res. Lett. 21, 417–420 (1994)CrossRefGoogle Scholar
  11. 11.
    Roble, R.G.: On the feasibility of developing a global atmospheric model extending from the ground to the exosphere. In: “Atmospheric Science Across the Stratopause,” Geophysical Monograph 123, American Geophysical Union, pp. 53–67 (2000)Google Scholar
  12. 12.
    Namgaladze, A.A., Martynenko, O.V., Volkov, M.A., et.al.: Highlatitude version of the global numerical model of the Earth’s upper atmosphere. Proceedings of the MSTU 1(2), 23–84 (1998)Google Scholar
  13. 13.
    Namgaladze, A.A., Martynenko, O.V., Volkov, M.A., et.al.: Mathematical modeling of large-scale upper atmosphere perturbations, Modelling of upper polar atmosphere processes. PGI KSC RAS, pp. 167–249 (1998)Google Scholar
  14. 14.
    Fuller-Rowell, T.J.: A two-dimensional, high-resolution nested-grid model of thermosphere 2: response of the thermosphere to narrow and broed electrodynamic features. J. Geophys. Res. 90(A6), 6567–6568 (1985)CrossRefGoogle Scholar
  15. 15.
    Bilitza, D.: International reference ionosphere 2000. Radio Sci. 36, 261–275 (2001)CrossRefGoogle Scholar
  16. 16.
    Hedin, A.E.: MSIS-86 thermospheric model. J. Geophys. Res. 92, 4649–4973 (1987)CrossRefGoogle Scholar
  17. 17.
    Hedin, A. E., Fleming, E.L., Manson, A.H., et.al.: Vial empirical wind model for the upper, middle and lower atmosphere. J. Atmos. Terr. Phys. 58(13), 1421–1447 (1996)CrossRefGoogle Scholar
  18. 18.
    Klimenko, V.V., Korenkov, Yu.N., Bessarab, F.S., et.al.: Model/data comparison of the F2-region parameters for August 11, 1999 Solar eclipse. Adv. Space Res. 31(4), 995–1000 (2003)CrossRefGoogle Scholar
  19. 19.
    Richmond, A.M., Wiltberger, M., Hanli, L.: The upper atmosphere problems in developing realistic models. Geophysical Models at NCAR. A Scoping and Synthesis Workshop, NCAR. Boulder, CO, 13–14 Nov pp. 1–3 (2006)Google Scholar
  20. 20.
    Fuller-Rowell, T.J., Codrescu, M.V., Roble, R.G.: How do the thermosphere and ionosphere react to a geomagnetic storm? Magnetic storm. Geophys. Monogr. AGU 98, 203–225 (1998)Google Scholar
  21. 21.
    Prölss, G. W.: Ionospheric F-region storms. In: Volland, H. (ed.) Handbook of Atmospheric Electrodynamics, 2, pp. 195–248. CRC Press, Boca Raton, FL (1995)Google Scholar
  22. 22.
    Kamide, Y.: Interplanetary and magnetospheric electric fields during geomagnetic storms: what is more important – steady-state fields or fluctuating fields? J. Atmos. Sol.-Terr. Phys. 63(5), 413–420 (2001)CrossRefGoogle Scholar
  23. 23.
    Rees, D.: Observations and modeling of ionosphere and thermospheric disturbances during geomagnetic storm: a review. J. Atmos. Terr. Phys. 57(12), 1433–1457 (1995)CrossRefGoogle Scholar
  24. 24.
    Korenkov, Yu.N., Bessarab, F.S., Klimenko, V.V., et.al.: Numerical modeling of the thermosphere–ionosphere coupling during substorm. Adv. Space Res. 18(1), 41–44 (1996)CrossRefGoogle Scholar
  25. 25.
    Fuller-Rowell, T.J., Codrescu, V.C., Wilkinson, P.: Quantitative modeling of the ionospheric response to geomagnetic activity. Ann. Geophys. 18(7), 766–781 (2000)CrossRefGoogle Scholar
  26. 26.
    Codrescu, M.V., Fuller-Rowell, T.J., Foster, J.S.: On the importance of E-field variability for Joule heating in the high-latitude thermosphere. Geophys. Res. Lett. 22(17), 2393–2396 (1995)CrossRefGoogle Scholar
  27. 27.
    Wang, W., Wiltberger, M., Burns, A.G., et.al.: Initial results from the coupled magnetosphere–ionosphere and -thermosphere model: thermosphere-ionosphere responses. J. Atmos. Solar-Terr. Phys. 66, 1425–1438 (2004). doi:10.1016/j.jastp. 2004. 04. 008CrossRefGoogle Scholar
  28. 28.
    Wiltberger, M., Wang, W., Burns, A.G., et.al.: Initial results from the coupled magnetosphere–ionosphere–thermosphere model: magnetospheric and ionospheric responses. J. Atmos. Solar-Terr. Phys. 66, 1411–1424 (2004). doi:10.1016/j.jastp. 2004. 04. 026CrossRefGoogle Scholar
  29. 29.
    Moffett, R.J., Millward, G.H., Quegan, S., et.al.: Results from a coupled model of the thermosphere, ionosphere, and plasmosphere (CTIPM). Adv. Space Res. 18(3), 33–39 (1996)CrossRefGoogle Scholar
  30. 30.
    Salah, J.E., Goncharenko, L.P.: Search for geomagnetic storm effects on lower thermospheric winds at midlatitudes. J. Atmos. Sol.-Terr. Phys. 63(9), 951–963 (2001)CrossRefGoogle Scholar
  31. 31.
    Rees, D., Fuller-Rowell, T.J.: Comparison of empirical and theoretical models of species in the lower thermosphere. Adv. Space Res. 13(1), 107–129 (1993)CrossRefGoogle Scholar
  32. 32.
    Karpov, I.V., Korablinova, N.A.: The migrating tide influence on lower thermosphere circulation at middle latitudes. Geom. Aeron. 38(2), 112–119 (1998)Google Scholar
  33. 33.
    Fessen, C.G., Roble, R.G., Ridley, E.C.: Thermospheric tides at equinox: Simulation with coupled composition and auroral forcing. 1. Diurnal component. J. Geophys. Res. 96(A3), 3647–3661 (1991)CrossRefGoogle Scholar
  34. 34.
    Fessen, C.G., Roble, R.G., Ridley, E.C.: Thermospheric tides at equinox: Simulation with coupled composition and auroral forcing. 2. Semidiurnal component. J. Geophys. Res. 96(A3), 3663–3677 (1991)CrossRefGoogle Scholar
  35. 35.
    Korenkov, Yu.N., Klimenko, V.V., Bessarab, N.S.: The investigation of boundary conditions influence on thermodynamical balance OH thermosphere at winter solstice. Geom. Aeron. 43(2), 119–128 (2003)Google Scholar
  36. 36.
    Lashtovicka, J.: Forcing of the ionosphere by waves from below. J. Atmos. Sol.-Terr. Phys. 68, 479–497 (2006)CrossRefGoogle Scholar
  37. 37.
    Altadill, D., Apostolov, E.M.: Time and scale size of planetary wave signatures in the ionosphere F-region. Role of the geomagnetic activity and mesosphere/lower thermosphere winds. J. Geophys. Res. 108(A11), 1403–1429 (2003)CrossRefGoogle Scholar
  38. 38.
    Karpov, I.V., Bessarab, F.S.: Model investigation of solar terminator influence on thermospheric parameters. Geom. Aeron. 48(2), 217–227 (2008)Google Scholar
  39. 39.
    Frohlich, K., Pogoreltsev, A., Jacobi, Ch: The 48-layer COMMA-LIM model. Rep. Inst. Meteorol. Univ. Leipzig. 30, 157–185 (2003)Google Scholar
  40. 40.
    Miyahara, S., Miyoshi, Y.: Migrating and nonmigrating atmospheric tides simulated by a middle atmosphere general circulation model. Adv. Space Res. 20, 1201–1205 (1997)CrossRefGoogle Scholar
  41. 41.
    Wells, G.D., Rodger, A.S., Moffett, R.G., et al.: The effects of nitric oxide cooling and photodissociation of molecular oxygen in the thermosphere/ionosphere system over the Argentine islands. Ann. Geophys. 15, 355–365 (1997)CrossRefGoogle Scholar
  42. 42.
    Killeen, T.L., Burns, A.G., Azeem, I.: A theoretical analysis of the energy budget in the lower thermosphere. J. Atmos. Sol-Terr. Phys. 59, 675–689 (1997)CrossRefGoogle Scholar
  43. 43.
    Bessarab, F.S., Korenkov, Yu.N.: The dynamical processes influence on heat balance of upper thermosphere. Geom. Aeron. 33(5), 120–126 (1993)Google Scholar
  44. 44.
    Bessarab, F.S., Korenkov, Yu.N.: The nitric oxide influence on global distributions of thermosphere and ionosphere parameters. Geom. Aeron. 38(5), 107–116 (1998)Google Scholar
  45. 45.
    Fuller-Rowell, T.J.: Modeling of solar cycle change in nitric oxide in the thermosphere and upper mesosphere. J. Geophys. Res. 98, 1559–1570 (1993)CrossRefGoogle Scholar
  46. 46.
    Fuller-Rowell, T.J., Rees, D., Rishbeth, H., et al.: Modelling of composition changes during F-region storms – a reassessment. J. Atmos. Terr. Phys. 53, 541–550 (1991)CrossRefGoogle Scholar
  47. 47.
    Fuller-Rowell, T.J., Rees, D., Tinsley, B.A., et.al.: Modeling the response of the thermosphere and ionosphere to geomagnetic storms: Effects of a mid-latitude heat source. Adv. Space Res. 10(6), 215–222 (1990)CrossRefGoogle Scholar
  48. 48.
    Avakyan, S.V.: Physics of solar-terrestrial connections: some results and new approaches. Geom. Aeron. 48(4), 435–443 (2008)Google Scholar
  49. 49.
    Golubkov, G.V., Ivanov, G.K.: Rydberg atoms and molecules in the medium of neutral particles. Khim. Fiz. 22(10), 25–86 (2003)Google Scholar
  50. 50.
    Golubkov, G.V., Ivanov, G.K.: Rydberg states of atoms and molecules and elementary processes with their participation. URRS, Moscow (2001)Google Scholar
  51. 51.
    Golubkov, G.V., Golubkov, M.G., Ivanov G.K.: Rydberg atom A** in a field of neutral atom B. In: Gigosos, M.A., Gonzalez, M.A. (eds.) Spectral Line Shapes, Vol. 15; XIX ICSLS, Valladolid, Spain, pp. 140–142. Melville, New York (2008)Google Scholar
  52. 52.
    Golubkov, G.V., Ivanov G.K., Golubkov, M.G., Karpov, I.V.: Rydberg atom microwave radiation the field of the chaotically located neutral particles. Abstracts of 1st International conference “Atmosphere, Ionosphere, Safety” (AIS 2008), pp. 99–101. Kaliningrad (2008)Google Scholar
  53. 53.
    Avakyan, S.V., Voronin, N.A., Serova,. A.E.: The role Rydberg atoms and molecules in the upper atmosphere. Geom. Aeron. 37(3), 99–106 (1984)Google Scholar
  54. 54.
    Avakyan, S.V.: The microwave radiation from ionosphere as factor of solar flashes and geomagnetic storms influence on biosystems. Opt. J. 72(8), 41–48 (2005)Google Scholar
  55. 55.
    Szabo, A., Ostlund, N.S.: Modern Quantum Chemistry. Dover, Mineola, New York (1966)Google Scholar
  56. 56.
    Werner, H.-J., Knowles, P.J.: An efficient internally contracted multiconfiguration – reference configuration interaction method. J. Chem. Phys. 89, 5803–5811 (1988)CrossRefGoogle Scholar
  57. 57.
    Golubkov, G.K., Ivanov, G.K., Balashov, E.M.: Interactions of the highly excited atoms and molecules with neutral particles. Features of the potential energy surfaces and the charge exchange processes. Chem. Phys. Rep. 14(8), 1104–1127 (1995)Google Scholar
  58. 58.
    Golubkov, G.V., Ivanov, G.K., Balashov, E.M., and Golubkov, M.G.: l mixing and dissociation of Rydberg molecules accompanying slow collisions with inert-gas atoms, JETP. 87(1), 56–63 (1998)CrossRefGoogle Scholar
  59. 59.
    Matsuzava, M.: Theoretical investigations of Rydberg atom collisions with molecules. In: Stebbings, R., Dunning, F. (eds.) Rydberg States of Atoms and Molecules. Cambridge University Press, Cambridge (1983)Google Scholar
  60. 60.
    Ivanov, G.K., Golubkov, G.V., Balashov, E.M.: Role of non-adiabatic mixing of the vibronic states of highly excited molecules with neutral particles. Dokl. Akad. Nauk SSSR. 323, 311–315 (1992)Google Scholar
  61. 61.
    Balashov, E.M., Golubkov, G.V., Ivanov, G.K.: Strong irregular excitation-energy dependence of the inelastic transitions and collisional ionization cross-sections of highly excited molecules. JETP 76(2), 200–209 (1993)Google Scholar
  62. 62.
    Nikitin E.E., Umanskii S.Ya. Theory of Slow Atomic Collisions. Springer-Verlag, Berlin, Heidelberg/New York/Tokyo (1981)Google Scholar
  63. 63.
    Devdariani, A.Z.: Radiation of quasimolecules, Opt. Spectrosc. 86(6), 954–959 (1999)Google Scholar
  64. 64.
    Zhu, C., Babb, J.F., Dalgarno, A.: Theoretical study of sodium and potassium resonance lines pressure broadened by helium atoms. Phys. Rev. A. 73, 012506 (2006)CrossRefGoogle Scholar
  65. 65.
    Lehner, M., Xu, R., Jungen, M.: The emission spectrum of the Li(2p)He2. J. Phys. B 38, 1235–1247 (2005)CrossRefGoogle Scholar
  66. 66.
    Namgaladze, A.A., Korenkov, Yu.N., Klimenko, V.V., et.al.: Global model of the Earth thermosphere–ionosphere–protonosphere. Geomagn. Aeron. 30(4), 612–619 (1990)Google Scholar
  67. 67.
    Namgaladze, A.A., Korenkov Ju.N., Klimenko V.V. et al.: Numerical modelling of the thermosphere-ionosphere-protonosphere system. J. Atmos. Terr. Phys. 53(11, 12), 1113–1124 (1991)CrossRefGoogle Scholar
  68. 68.
    Bessarab, F.S., Korenkov, Yu.N., Karpov, I.V.: Sensitivity of GSM TIP model to the variability of the UV and EUV solar radiation. Phys. Chem. Earth. 25(5, 6), 543–546 (2000)Google Scholar
  69. 69.
    Afraimovich, E.L., Perevalova, N.P.: GPS-Monitoring of the Earth Upper Atmosphere. SC RRS SB RAMS, Irkutsk, Russia (2006)Google Scholar
  70. 70.
    Karpov, I.V. Shagimuratov, I.I., Yakimova., G.A.: Ionospheric Effects of Poincare Waves. In: Proceedings of International Conference “Fundamental Space Research”, pp. 75–77, Sunny Beach, Bulgaria (2008)Google Scholar
  71. 71.
    Liperovskyi, V.A., Pohotelov, O.A., Shalimov, S.A.: The Ionosphere Precursors of Earthquakes. Nauka, Moscow (1992)Google Scholar
  72. 72.
    Pulinets S.A., Boyarchuk K.: Ionospheric Precursors of Earthquakes. Springer, Berlin, Germany 315 p (2004)Google Scholar
  73. 73.
    Zakharenkova, I.E.: The using of GPS signals measurements for finding of earthquake ionosphere precursors.// Cand. Diss., RSU, Kaliningrad 134 p (2007)Google Scholar
  74. 74.
    Namgaladze, A.A., Klimenko, M.V., Klimenko, V.V., and Zakharenkova, I.E.: Physical mechanism and mathematical modeling of earthquake ionospheric precursors registered in total electron content. Geom. Aeron. 49(2), 252–262 (2009)CrossRefGoogle Scholar
  75. 75.
    Sorokin, V. M., Chmyrev, V. M., Yaschenko, A. K.: Theoretical model of DC electric field formation in the ionosphere stimulated by seismic activity. J. Atmos. Sol.-Terr. Phys. 67, 1259–1268 (2005)CrossRefGoogle Scholar
  76. 76.
    Namgaladze, A.A., Klimenko, M.V., Klimenko, V.V., Zakharenkova, I.E.: Physical mechanism and mathematical modeling of earthquake ionosphere precursors registered in total electron content. Geom. Aeron. 49(2), 267–277 (2009)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • I. V. Karpov
    • 1
  • G. V. Golubkov
  1. 1.West Department IZMIRANKaliningradRussia

Personalised recommendations