Skip to main content

Growth and Development of Root Systems

  • Chapter
Physiology of Cotton

Abstract

The importance of the root system to productivity has been acknowledged for nearly a century (Weaver, 1926). It is common knowledge that roots serve as an anchor to the plant and act as the means by which the plant takes up water and nutrients that are necessary for plant survival and growth. In recent years, the use of modern technology has revealed such things as genetic diversity in cotton root systems and the role of root signals in impacting the overall growth and development of the plant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Acevedo, E. and T.C. Hsiao. 1974. Plant responses to water deficit, water use efficiency and drought resistance. Agri. Meteorol. 14:59-84.

    Google Scholar 

  • Ackerson, R.C. 1981. Osmoregulation in cotton in response to water stress: II. Leaf carbohydrate status in relation to osmotic adjustment. Plant Physiol. 67:489-493.

    PubMed  CAS  Google Scholar 

  • Ackerson, R.C. and R.R. Herbert. 1981. Osmoregulation in cotton in response to water stress: I. Alterations in photosynthesis, leaf conductance, translocation, and ultrastructure. Plant Physiol. 67:484-488.

    PubMed  CAS  Google Scholar 

  • Adams, F. and Z.F. Lund. 1966. Effect of chemical activity of soil solution aluminum on cotton root penetration of acid subsoils. Soil Sci. 101 193-198.

    CAS  Google Scholar 

  • Aiken, R.M. and A.J.M. Smucker. 1996. Root system regulation of whole plant growth. Annu. Rev. Phytopathol. 34:325-326.

    PubMed  CAS  Google Scholar 

  • Arndt, C.H. 1945. Temperature-growth relations of the roots and hypocotyls of cotton seedlings. Plant Physiol. 20:200-219.

    PubMed  CAS  Google Scholar 

  • Baath, E. and D.S. Hayman. 1984. No effect of VA mycorrhizae on red core disease of strawberry. Trans. British Mycol. Soc. 82:534-536.

    Google Scholar 

  • Ball, R.A. 1992. Root dynamics, shoot growth and solute accumulation in cotton ( Gossypium hirsutum L.) during water deficit stress and recovery. M.S. Thesis, University of Arkansas, Fayetteville.

    Google Scholar 

  • Barber, S.A. 1984. Soil nutrient bioavailability: A mechanistic approach. Wiley, New York.

    Google Scholar 

  • Barrs, H.D. 1971. Cyclic variation in stomatal aperture, transpiration, and leaf water potential under constant environmental conditions. Annu. Rev. Plant Physiol. 22:223-236.

    Google Scholar 

  • Bland, W.L. 1993. Cotton and soybean root system growth in three soil temperature regimes. Agron. J. 85:906-911.

    Google Scholar 

  • Bland, W.L. and W.A. Dugas. 1989. Cotton root growth and soil water extraction. Soil Sci. Soc. Am. J. 53:1850-1855.

    Google Scholar 

  • Bloodworth, M.E. 1960. Effect of soil temperature on water use by plants. Trans. Seventh Int’l Cong. Soil Sci. 1:153-163.

    Google Scholar 

  • Bohm, W. 1979. Methods of Studying Root Systems. Ecol. Stud. 33.Springer-Verlag Publisher. New York.

    Google Scholar 

  • Brouder, S.M. and K.G. Cassman. 1990. Root development of two cotton cultivars in relation to potassium uptake and plant growth in a vermiculitic soil. Field Crops Res. 23:187-203.

    Google Scholar 

  • Brouder, S.M. and K.G. Cassman. 1994. Cotton root and shoot response to localized supply of nitrate, phosphate, and potassium: Split-pot studies with nutrient solution and vermiculitic soil. Plant Soil 161:179-193.

    CAS  Google Scholar 

  • Brown, H.B. and J.O. Ware. 1958. Cotton. 3rd ed. McGraw- Hill, New York.

    Google Scholar 

  • Burke, J.J. and D.R. Upchurch. 1995. Cotton rooting patterns in relation to soil temperatures and the thermal kinetic window. Agron J. 87:1210-1216.

    Google Scholar 

  • Cappy, J.J. 1979. The rooting patterns of soybean and cotton throughout the growing season. Ph.D. Dissertation. Univ. of Arkansas, Fayetteville.

    Google Scholar 

  • Carmi, A. 1986. Effects of root zone volume and plant density on the vegetative and reproductive development of cotton. Field Crops Res. 13:25-32.

    Google Scholar 

  • Carmi, A. and J. Shalhevet. 1983. Root effects on cotton growth and yield. Crop Sci. 23:875-878.

    Google Scholar 

  • Ching, P.C. and S.A. Barber. 1979. Evaluation of temperature effects on K uptake by corn. Agron. J. 71:1040-1044.

    CAS  Google Scholar 

  • Cook, C.G. and K.M. El-Zik. 1992. Cotton seedling and first-bloom characteristics: relationships with drought-influenced boll abscission and lint yield. Crop Sci. 32:1464-1467.

    Google Scholar 

  • Cornish, K. and J.A.D. Zeevart. 1985. Abscisic acid accumulation by roots of Xanthium strumarium L. and Lycopersicon esculentum Mill. in relation to water stress. Plant Physiol. 79:653-658.

    PubMed  CAS  Google Scholar 

  • Cutler, J.M. and D.W. Rains. 1977. Effects of irrigation history on responses of cotton to subsequent water stress. Crop Sci. 17:329-335.

    Google Scholar 

  • Davis, R.M. 1980. Influence of Glomus fasciculatus on Thielaviopsis basicola root rot of citrus. Plant Dis. 64:839-840.

    Google Scholar 

  • Davis, R.M. and J.A. Menge. 1981. Phytophthora parasitica inoculation and intensity of vesicular-arbuscular mycorrhizae in citrus. New Phytol. 87:705-715.

    Google Scholar 

  • Davis, W.J. and J. Zhang. 1991. Root signals and the regulation of growth and development of plants in drying soils. Annu. Rev. Plant Physiol. and Plant Mol. Biol. 423:76.

    Google Scholar 

  • Dehne, H.W. 1982. Interactions between vesicular-arbuscular mycorrhizal and plant pathogens. Phytopath. 72:1115-1119.

    Google Scholar 

  • Drew, M.C. and L.H. Stolzy. 1991. Growth under oxygen stress. pp.331-350. In: Y. Waisel, A. Eshel, and U. Kafkafi (eds.). Plant Roots: The Hidden Half. Marcel Dekker, New York.

    Google Scholar 

  • El-Zahab, A.A.A. 1971b. Salt tolerance of eight Egyptian cotton varieties. Part II. At the seedling stage. Z. Acker-und Pflanzenbau 133:308-314.

    Google Scholar 

  • Evans, D.G. and M.H. Miller. 1990. The role of the external mycelial network the effects of soil disturbance upon vesicular-arbuscular mycorrhizal colonization of young maize. New Phytol. 114:65-71.

    Google Scholar 

  • Fiscus, E.L. 1983. Water transport and balance within the plant: resistance water flow in roots. In: H.M. Taylor, W.R. Jordan, and T.R. Sinclair (eds.). Limitations to efficient water use in crop production. American Society of Agronomy, Madison, WI.

    Google Scholar 

  • Frankenberger, W.T. and M. Arshad. 1995. Phytohormones in soils: microbial production and function. Marcel Dekker, New York.

    Google Scholar 

  • Friese, C.F. and M.F. Allen. 1991. The spread of VA mycorrhizal fungal hyphae in soil: lnoculum types and external hyphal architecture. Mycologia 83:409-418.

    Google Scholar 

  • Funderberger, E.R. 1988. Effects of starter fertilizer on cotton yields in Mississippi. pp. 496-497. In: J.M. Brown (ed.). Beltwide Cotton Prod. Res. Conference., New Orleans, LA. 3-8 Jan., 1988. National Council of America. Memphis, Tenn.

    Google Scholar 

  • Glinski, J. and J. Lipiec. 1990. Soil Physical Conditions and Plant Roots. CRC Press, Inc., Boca Raton, FL.

    Google Scholar 

  • Graham, J.H. and D.S. Egel. 1988. Phytopthora root development on mycorrhizal and phosphorous-fertilized nonmycorrhizal sweet orange seedlings. Plant Dis. 72:611-614.

    Google Scholar 

  • Gross, O. and B. Partheir. 1994. Novel natural substances acting in plant growth regulation. J. Plant Growth Regul. 13:93-114.

    CAS  Google Scholar 

  • Guinn, G. and R.E. Hunter. 1968. Root temperature and carbohydrate status of young cotton plants. Crop Sci. 8:67-70.

    CAS  Google Scholar 

  • Guthrie, D.S. 1991. Cotton response to starter fertilizer placement and planting dates. Agron. J. 83:836-839.

    Google Scholar 

  • Halevy, J. 1976. Growth rate and nutrient uptake of two cotton cultivars grown under irrigation. Agron. J. 68:701-705.

    Google Scholar 

  • Hartmann, H. and D. Kester. 1984. Plant propagation: Principles and Practices. Prentice Hall, Engelwood, CA.

    Google Scholar 

  • Hayward, H.E. 1938. The structure of economic plants. The MacMillan Co., New York.

    Google Scholar 

  • Hess, D. and D. Bayer. 1974. The effect of trifuralin on the ultrastructure of dividing cells of the root meristem of cotton (Gossypium hursutum L. ‘Acala 4-42’) J. Cell Sci. 15:429-441.

    PubMed  CAS  Google Scholar 

  • Holman, E.M. 1993. Foliar fertilization of environmentally stressed cotton seedlings. MS. Thesis. University of Arkansas. Fayetteville, AR.

    Google Scholar 

  • Hons, F.M. and B.L. McMichael. 1986. Planting pattern effects on yield, water use and root growth in cotton. Field Crops Res. 13:147-158.

    Google Scholar 

  • Hsiao, T.C. 1973. Plant responses to water stress. Annu. Rev. Plant Physiology. 24:519-570.

    CAS  Google Scholar 

  • Huck, M.G. 1970. Variation in taproot elongation rate as influenced by composition of the soil air. Agron. J. 62:815-818.

    Google Scholar 

  • Ingham, R.E. 1988. Interactions between nematodes and VA mycorrhizae. Agric. Ecosyst. Environ. 24:169-182.

    Google Scholar 

  • Itai, C. and H. Birnbaum. 1996. Synthesis of plant growth regulators by roots. pp. 273-284. In: Y. Waisel, A. Eshel, and U. Kafkafi (eds.). Plant Roots: The Hidden Half. Marcel Dekker,Inc. New York.

    Google Scholar 

  • Jackson, M.B. 1985. Ethylene and response of plants to soil waterlogging and submergence. Annu. Rev. Plant Physiol. 36:145-174.

    CAS  Google Scholar 

  • Jackson, N.B. 1982. Ethylene as a growth promoting hormone under flooded conditions. Pp. 291-301. In: P.F. Wareing (ed.). Plant Growth Substances. Academic Press, NY.

    Google Scholar 

  • Johnson, N. and F.L. Pfleger. 1992. Vesicular-arbuscular mycorrhizae and cultural stresses. pp. 71-100. In: G.J. Bethlenfalvay and R.G. Linderman (eds.). Mycorrhizae in Sustainable Agriculture. ASA Special Publication Number 54, Madison, WI.

    Google Scholar 

  • Jones, M.N. and N.C. Turner. 1978. Osmotic adjustment in leaves of sorghum in response to water deficit. Plant Physiol. 61:122-126.

    PubMed  CAS  Google Scholar 

  • Jordan, W.R. 1983. Cotton. pp. 213-254. In: I.D. Teare and M.M. Peets (eds.). Crop Water Relations. John Wiley & Sons, New York.

    Google Scholar 

  • Kaspar, T.C. and W.L. Bland. 1992. Soil temperature and root growth. Soil Sci. 145:290-299.

    Google Scholar 

  • Kende, H. 1964. Preservation of chlorophyll in leaf sections by substances obtained from root exudate. Science 145:1066-1067.

    Google Scholar 

  • Ketcheson, J.W. 1968. Effect on controlled air and soil temperature and starter fertilizer on growth and nutrient composition of corn. Soil Sci. Soc. Amer. Proc. 3253 1-534.

    Google Scholar 

  • King, C.J. and J.T. Presley. 1942. A root disease of cotton caused by Thielaviolpsis basciola. Phytopath. 32:752-761.

    Google Scholar 

  • Kramer, P.J. 1969. Plant and soil relationships: A modern synthesis. McGraw-Hill, New York.

    Google Scholar 

  • Kramer, P.J. and J.S. Boyer. 1995. Water relations of plants and soils. Academic Press, San Diego. pp. 495.

    Google Scholar 

  • Kulaeva, O.N. 1962. The effect of root on leaf metabolism in relation to the action of kinetin on leaves. Fiziol. Rasteni (Soviet Plant Physiol., Engl. Translation). 9:182-189.

    Google Scholar 

  • Kurle, J,E. and F.L. Pfleger. 1994. The effects of cultural practices and pesticides on VAM fungi. pp. 101-132. In: F.L Pfleger and R.G. Linderman (eds.). Mycorrhizae and Plant Health. APS Press, St Paul, MN.

    Google Scholar 

  • Leonard, O.A. 1945. Cotton root development in relation to natural aeration of some Mississippi blackbelt and delta soils. Agron. J. 37:55-71.

    CAS  Google Scholar 

  • Linderman, R.G. 1992. Vesicular-arbuscular mycorrhizae and soil microbial interactions. pp. 45-70. In: G.J. Bethlenfalvay and R.G. Linderman (eds.). Mycorrhizae in Sustainable Agriculture. ASA Special Publication Number 54, Madison, WI.

    Google Scholar 

  • Manjunath, A. and M. Habte. 1991. Root morphology characteristics of host species having distinct mycorrhizal dependency. Can. J. Bot. 69:671-676.

    Google Scholar 

  • McMichael, B.L. 1986. Growth of roots. p. 29-38. In: J.R. Mauney and J.McD. Stewart (eds.). Cotton Physiology. The Cotton Foundation, Memphis, Tenn.

    Google Scholar 

  • McMichael, B.L. and J.J. Burke. 1994. Metabolic activity of cotton roots in response to temperature. Environ. Expl. Bot. 34:201-206.

    Google Scholar 

  • McMichael, B.L. and C.D. Elmore. 1977. Proline accumulation in water stressed cotton leaves. Crop Sci. 17:905-908.

    CAS  Google Scholar 

  • McMichael, B.L. and J.E. Quisenberry. 1991. Genetic variation for root-shoot relationships among cotton germplasm. Environ. and Exp. Bot. 31:461-470.

    Google Scholar 

  • McMichael, B.L. and J.E. Quisenberry. 1993. The impact of the soil environment on the growth of root systems. Environ. and Exp. Bot. 33:53-61.

    Google Scholar 

  • Merrill, S.D. and D.R. Upchurch. 1994. Converting root numbers observed at minirhiztrons to equivalent root length density. Soil Sci. Soc. Am. J. 58:1061-1067.

    Google Scholar 

  • Meyer, W.S. and H.D. Barrs. 1985. Non-destructive measurement of wheat roots in large undisturbed and repacked clay soil cores. Plant and Soil 85:237-247.

    Google Scholar 

  • Morgan, J.M. 1980. Osmotic adjustment in the spikelets and leaves of wheat. Exp. Bot. 31:655-665.

    Google Scholar 

  • Morgan, J.M. 1984. Osmoregulation and water stress in higher plants. Ann. Rev. Plant Physiol. 35:299-319.

    Google Scholar 

  • Morgan, J.M. and Condon. 1986. Water use, grain yield and osmoregulation in wheat. Aust. J. Plant Physiol. 13:523-532.

    Google Scholar 

  • Mullins, G.L. 1993. Cotton root growth as affected by P fertilizer placement. Fert. Res. 34:23-26.

    CAS  Google Scholar 

  • Munns, R. and A. Termaat. 1986. Whole-plant responses to salinity. Aust. Plant Physiol. 13:143-60.

    Google Scholar 

  • Nelson W.W. and R.R. Allmaras. 1969. An improved monolith method for excavating and describing roots. Agron. J. 61:751-754.

    Google Scholar 

  • Nielsen, K.F. 1974. Roots and root temperature. pp 293-335 In: E.W. Carson (ed.). The Plant and Its Environment. Univ. Press of Virginia, Charlottesville.

    Google Scholar 

  • Oosterhuis, D.M. 1987. A technique to measure components of root water potential. Plant Soil 103:285-288.

    Google Scholar 

  • Oosterhuis, D.M. 1992. Foliar feeding with potassium nitrate in cotton. Proc. Beltwide Cotton Conf., Nashville, Tenn. pp. 71-72.

    Google Scholar 

  • Oosterhuis, D.M. 1995b. Potassium nutrition of cotton in the USA, with particular reference to foliar fertilization. In: G.A. Constable and N.W. Forrester (eds.). Challenging the Future: Proc. World Cotton Conference-1. Brisbane Australia. CSIRO, Melbourne. pp. 133-146.

    Google Scholar 

  • Oosterhuis, D.M. 1996. Research on chemical plant growth regulation of cotton at the University of Arkansas. Proc 1996 Cotton Research Meeting and Research Summaries. University of Arkansas, Agri Exp. St., Special Report 178:10-19.

    Google Scholar 

  • Oosterhuis, D.M. and H.H. Wiebe. 1980. Hydraulic conductivity and osmotic adjustment in drought acclimated cotton. Plant Physiol. 65:5 (suppl).

    Google Scholar 

  • Oosterhuis, D.M. and H.H. Wiebe. 1986. Water stress preconditioning and cotton root pressure-flux relationships. Plant Soil 95:69-76.

    Google Scholar 

  • Oosterhuis, D.M. and S.D. Wullschleger. 1987a. Osmotic adjustment in cotton (Gossypium hirsutum L.) leaves and roots in response to water stress. Plant Physiol. 84:1154-1157.

    PubMed  CAS  Google Scholar 

  • Oosterhuis, D.M. and S.D. Wullschleger. 1987b. Water flow through cotton roots in relation to xylem anatomy. J. Exp. Bot. 38:1866-1874.

    Google Scholar 

  • Oosterhuis, D.M. and S.D. Wullschleger. 1988. Carbon partitioning and photosynthetic efficiency during boll development. pp. 57-60 In: D.A. Richter (ed.). 1988 Proc. Beltwide Cotton Conferences. National Cotton Council, Memphis.

    Google Scholar 

  • Oosterhuis, D.M. and D. Zhao. 1994. Increased root length and branching in cotton by soil application of the plant growth regulator PGR-4. Plant and Soil 167:51-56.

    CAS  Google Scholar 

  • Passioura, J.B. and C.B. Tanner. 1985. Oscillations in apparent hydraulic conductance of cotton plants. Aust. J. Plant Physiol. 2:455-461.

    Google Scholar 

  • Quisenberry, J.E. and B.L. McMichael. 1996. Screening cotton germplasm for root growth potential. Environ. and Exp. Bot. 36:333-338.

    Google Scholar 

  • Radin, J.W. 1990. Response of transpiration and hydraulic conductance to root temperature in nitrogen and phosphorus deficient cotton seedlings. Plant Physiol. 92:855-857.

    PubMed  CAS  Google Scholar 

  • Radin, J.W. and R.C. Ackerson. 1981. Water relations of cotton plants under nitrogen deficiency. III. Stomatal conductance. Plant Physiol. 67:115-119.

    PubMed  CAS  Google Scholar 

  • Read, D.J. 1992. The Mycorrhizal Mycelium. pp. 102-133. In: M. Allen (ed.). Mycorrhizal functioning: An integrative plant–fungal process. Chapman and Hall, New York.

    Google Scholar 

  • Reid, M.S. 1985. Ethylene in plant growth, development, and senescence. pp. 257-279. In: P.J. Davies (ed.). Plant Hormones and Their Role in Plant Growth and Development. Martinus Nijhoff Publishers, Dordercht.

    Google Scholar 

  • Reinhardt, D.H. and T.L. Rost. 1995d. Developmental changes of cotton root primary tissues induced by salinity. Int. J. Plant Sci. 156:505-513.

    Google Scholar 

  • Rich, J.R. and G.W. Bird. 1974. Association of early-season vesicular-arbuscular mycorrhizae with increased growth and development of cotton. Phytopathology 64:1421-1425.

    CAS  Google Scholar 

  • Rodgers, J.P. 1981. Cotton fruit development and abscission: variations in the level of anxins. Trop. Agr. (Trin.) 58:63-72.

    Google Scholar 

  • Rogers, C.H. 1937. The effect of three and four year rotations on cotton root rot in the central Texas Blacklands. Agron. J. 29:668-680.

    Google Scholar 

  • Rothrock, C.S. 1992. Influence of soil temperature, water and texture on Thielaviopsis basicola and black root rot of cotton. Phytopath. 82:1202-1206.

    Google Scholar 

  • Sanders, J.L. and D.A. Brown. 1978. A new fiber optic technique for measuring root growth of soybeans under field conditions. Agron. J. 70:1073-1076.

    Google Scholar 

  • Sattelmacher, B. and H. Marschner. 1978. Nitrogen nutrition and cytokinin in Solanurn trubersosum. Physiol. Plant. 42:185-189.

    CAS  Google Scholar 

  • Sharp, R.E. and W.J. Davies. 1979. Solute regulation and growth by roots and shoots of water-stressed maize plants. Plant 147:43-49.

    CAS  Google Scholar 

  • Silberbush, M. and J. Ben-Asher. 1987. The effect of salinity on parameters of potassium and nitrate uptake of cotton. Communications in Soil Sci. and Plant Anal. 18:65-81.

    CAS  Google Scholar 

  • Spieth, A.M. 1933. Anatomy of the transition region in Gossypium. Bot. Gaz. 95:338-347.

    Google Scholar 

  • Steiner, J.J. and T.A. Jacobsen. 1992. Time of planting and diurnal soil temperature effects of cotton seedling field emergence and rate of development. Crop Sci. 32:238-244.

    Google Scholar 

  • Stolzy, L.H. 1974. Soil atmosphere. pp. 335-363. In: E.W. Carson (ed.). The Plant Root and its Environment. Univ. Press of Virginia, Charlottesville.

    Google Scholar 

  • Taylor, H.M. 1983. Managing root systems for efficient water use: An overview. pp. 87-113. In :W.R. Jordan and T.R. Sinclair (eds.). Limitations to Efficient Water Use in Crop Production. Amer. Soc. Agron., Madison.

    Google Scholar 

  • Taylor, H.M. and H.R. Gardner. 1963. Penetration of cotton seedling taproots as influenced by bulk density, moisture content, and strength of soil. Soil Sci. 96:153-156.

    Google Scholar 

  • Taylor, H.M. and B. Klepper. 1971. Water uptake by cotton roots during an irrigation cycle. Aust. J. Biol. Sci. 24:853-859.

    Google Scholar 

  • Taylor, H.M. and B. Klepper. 1974. Water relations of cotton. I. Root growth and water use as related to top growth and soil water content. Agron. J. 66:584-588.

    Google Scholar 

  • Taylor, H.M. and B. Klepper. 1975. Water uptake by cotton root systems: An examination of assumptions in the single root model. Soil Sci. 1 2057-2067.

    Google Scholar 

  • Taylor, H.M. and B. Klepper. 1978. The role of rooting characteristics in the supply of water to plants. Adv. Agron. 30:99-128.

    Google Scholar 

  • Taylor, H.M. and L.F. Ratliff.. 1969. Root elongation rates of cotton and peanuts as a function of soil strength and soil water content. Soil Sci. 108:113-119.

    Google Scholar 

  • Tennant, D. 1975. A test of a modified line intersect method of estimating root length. J. Appl. Ecol. 63:995-1001.

    Google Scholar 

  • Touchton, J.T. and W.L. Hargrove. 1983. Grain sorghum response to starter fertilizer. Better Crops with Plant Food. 68:3-5.

    Google Scholar 

  • Turner, N.C. 1986. Adaptation to water deficits: a changing perspective. Aust. J. Plant Physiol. 13:175-190.

    Google Scholar 

  • Turner, N.C. and M.M. Jones. 1980. Turgor maintenance by osmotic adjustment: A review and evaluation. pp. 87–103. In: N.C. Turner and P.J. Kramer (eds.). Adaptation of Plants to Water and High Temperature Stress. Wiley Interscience, New York.

    Google Scholar 

  • Urwiler, M.J. and D.M. Oosterhuis. 1986. The effect of the growth regulators Pix and IBA on cotton root growth. Ark. Farm Res. 36:(6)5.

    Google Scholar 

  • Varco, J.J. 1997. Proximity effects of a calcium nitrate starter fertilizer solution on cotton. 1997 Beltwide Cotton Conference, New Orleans. National Cotton Council of America, Memphis, Tenn.

    Google Scholar 

  • Weaver, J.E. 1926. Root Development of Field Crops. McGraw Hill, New York.

    Google Scholar 

  • Whitney, J.B. 1941. Effects of the composition of the soil atmosphere the absorption of water by plants. Amer. J. Bot. 28:14.

    Google Scholar 

  • Wiersum, L.K. 1958. Density of root branching as affected by substrate and separate ions. Acta Botanica Neerlandica 7:174-190.

    CAS  Google Scholar 

  • Wyn Jones, R.G., and J. Gorham. 1983. Osmoregulation. pp. 35-38. In: O.L. Lange, P.S. Nobel, C.B. Osmond, and H. Ziegler (ed.). Encyclopedia of Plant Physiology, New Series 12, Physiological Plant Ecology III. Springer Verlag, Berlin.

    Google Scholar 

  • Yang, S. and D.A. Grantz. 1996. Root hydraulic conductance in Pima cotton: Comparison of reverse flow, transpiration, and root pressure. Crop Sci. 36:1580-1589.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

McMichael, B., Oosterhuis, D., Zak, J., Beyrouty, C. (2010). Growth and Development of Root Systems. In: Stewart, J.M., Oosterhuis, D.M., Heitholt, J.J., Mauney, J.R. (eds) Physiology of Cotton. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3195-2_6

Download citation

Publish with us

Policies and ethics