Skip to main content

Physiology of Seed and Fiber Development

  • Chapter

Abstract

The ovules of cotton are composed of the immature seed (embryo and seed coat) and developing fiber. By the coincidence of their proximity, fiber and seed are competing sinks fed through a common funiculus. Partitioning of photosynthate between fiber and seed has been altered by plant breeding. Selection for high yield has increased the thickness of the fiber wall, as indicated by increased micronaire readings (Bridge and Meredith, 1983; Wells and Meredith, 1984). Concomitantly, boll and seed size has decreased (Bridge et al., 1971). These changes are not without an agronomic cost. Small seeds have poorer germination and lower seedling survival. Post-harvest problems are caused by small seed as well: small seed will often pass through the gin with the fiber. The agronomic impact of small seed and the economic impact of fiber make a compelling argument for understanding the physiological relationships between fiber and seed development and the physiology associated with specific events of fiber development.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Ackerson, R.C. 1984. Regulation of soybean embryogenesis by abscisic acid. J. Exp. Bot. 35:403-413.

    Article  CAS  Google Scholar 

  • Anderson, D.B. and T. Kerr. 1938. Growth and structure of cotton fiber. Industr. Engng. Chern. 30:48-55.

    Article  CAS  Google Scholar 

  • Ashley, D.A. 1972. 14C-labelled photosynthate translocation and utilization in cotton plants. Crop Sci. 12:69-74.

    Article  CAS  Google Scholar 

  • Basra, A.S. and C.P. Malik. 1983. Dark metabolism of CO2 during fibre elongation of two cottons differing in fibre length. J. Exp. Bot. 34:1-9.

    Article  CAS  Google Scholar 

  • Basra, A.S. and C.P. Malik. 1984. Development of the cotton fiber. Int. Rev. Cytol. 89:65-113.

    Article  CAS  Google Scholar 

  • Beasley, C.A. and J.P. Ting. 1973. The effects of plantgrowth substances on in vitro fiber development from fertilized cotton ovules. Amer. J. Bot. 60:130-139.

    Article  CAS  Google Scholar 

  • Beasley, C.A. and J.P. Ting. 1974. Effects of plant-growth substances on in vitro fiber development from unfertilized cotton ovules. Amer. J. Bot. 61:188-194.

    Article  CAS  Google Scholar 

  • Berlin, J.D. 1986. The outer epidermis of the cotton seed. pp. 375-414. In: J.R. Mauney and J.M. Stewart (eds.). Cotton Physiology. The Cotton Foundation, Memphis, Tenn.

    Google Scholar 

  • Blanton, R.L. and D.H. Northcote. 1990. A 1,4-β-D-glucan synthase system from Dictyostelium discoideum. Planta 180:324-332.

    Article  CAS  Google Scholar 

  • Bridge, R.R. and W.R. Meredith, Jr. 1983. Comparative performance of obsolete and current cotton cultivars. Crop Sci. 23:949-952.

    Article  Google Scholar 

  • Brown, K.J. 1968. Translocation of carbohydrate in cotton: movement to the fruiting bodies. Ann. Bot. 32:703-713.

    Google Scholar 

  • Buchala, A.J. 1987. Acid β-fructofuranoside fructohydrolase (invertase) in developing cotton (Gossypium arboreum L.) fibres and its relationship to β-glucan synthesis from sucrose fed to the fibre apoplast. J. Plant. Physiol. 127:219-230.

    CAS  Google Scholar 

  • Buser, C. and P. Matile. 1977. Malic acid in vacuoles isolated from Bryophyllum leaf cells. Z. Pflanzenphysiol. 82:462-466.

    CAS  Google Scholar 

  • Chang, K. and J.K.M. Roberts. 1989. Observation of cytoplasmic and vacuolar malate in maize root tips by 13C-NMR spectroscopy. Biochim. Biophys. Acta. 109:29-34.

    Google Scholar 

  • Chang-lie, J. and S. Sonobe. 1993. Identification and preliminary characterization of a 65 kDa higherplant microtubule-associated protein. J. Cell Sci. 105:891-901.

    Google Scholar 

  • Chrispeels, M.J. and C. Maurel. 1994. Aquaporins: the molecular basis of facilitated water movement through living plant cells? Plant Physiology 105:9-13.

    Article  PubMed  CAS  Google Scholar 

  • Clark, G.B. and S.J. Roux. 1995. Annexins of plant cells. Plant Physiol. 109:1133-1139.

    Article  PubMed  CAS  Google Scholar 

  • Corcoran, C.J. and C. Zeiher. 1995. Regulation of PEP carboxylase during cotton fiber elongation. Plant Physiol. Suppl. 108:120(610).

    Google Scholar 

  • Cyr, R.J. and B.A. Palevitz. 1989. Microtubule-binding proteins from carrot. 1. Initial characterization and microtubule bundling. Planta 177:245-260.

    Article  CAS  Google Scholar 

  • Davidonis, G. 1993a. A comparison of cotton ovule and cotton suspension cultures: Response to gibberellic acid and 2-chloroethylphosphonic acid. J. Plant Physiol. 141:505-507.

    CAS  Google Scholar 

  • Davis, L.A. and F.T. Addicott. 1972. Abscisic acid: Correlations with abscission and with development in the cotton fruit. Plant Physiol. 49:644-648.

    Article  PubMed  CAS  Google Scholar 

  • Delmer, D.P. 1994. The potential role of membrane-associated sucrose synthase in cellulose synthesis and of a small G-protein in cytoskeletal organization in the developing cotton fiber. pp. 105-108. In: G. Jividen and C. Benedict (eds.). Proc. Biochemistry of Cotton Workshop. Cotton Incorporated, Raleigh, NC.

    Google Scholar 

  • Delmer, D.P. and Y. Amor. 1995. Cellulose biosynthesis. Plant Cell 7:987-1000.

    Article  PubMed  CAS  Google Scholar 

  • Dhindsa, R.S. 1978a. Hormonal regulation of enzymes of non-autotrophic CO2 fixation in unfertilized cotton ovules. Z. Pflanzenphysiol. 89:355-365.

    CAS  Google Scholar 

  • Downward, J. 1992. Rac and rho in tune. Nature 359:273-274.

    Article  PubMed  CAS  Google Scholar 

  • Duckett, C.M. and C.W. Lloyd. 1994. Gibberellic acid-induced microtubule reorientation in dwarf peas is accompanied by rapid modification of an α-tubulin isotype. Plant J. 5:363-372.

    Article  CAS  Google Scholar 

  • Dure, L., III. 1975. Seed formation. Annu. Rev. Plant Physiol. 26:259-278.

    Article  CAS  Google Scholar 

  • Dure, L., III. 1993. Structural motifs in Lea proteins of higher plants. In: T.J. Kohel and E.A. Bray (eds.). Response of Plant to Cellular Dehydration during Environmental Stress. Amer. Soc. Plant Physiol., Rockville, Md.

    Google Scholar 

  • Dure, L., III. 1994. Structure/function studies of Lea protein. In: G. Coruzzi and P. Puigdomenech (eds.). NATO ASI Series Vol. H81, Plant Molecular Biology. Springer Verlag, Berlin

    Google Scholar 

  • Einspahr, K.J. and G.A. Thompson, Jr. 1990. Transmembrane signaling via phosphatidylinositoI4,5-bisphosphate hydrolysis in plants. Plant Physiol. 93:361-366.

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg, A.J. and J.P. Mascarenhaus. 1985. Abscisic acid and the regulation of synthesis of specific seed proteins and their messenger RNAs during culture of soybean embryos. Planta 166:505-514.

    Article  CAS  Google Scholar 

  • Fevre, M. and M. Rougier. 1981. β-1-3-and β-1-4-glucan synthesis by membrane fractions from the fungus Saprolegnia. Planta 151:232-241.

    Article  CAS  Google Scholar 

  • Flint, E.A. 1950. The structure and development of the cotton fiber. Biol. Rev. 25:414-434.

    Article  CAS  Google Scholar 

  • Graves, D.A. and J.M. Stewart. 1988a. Chronology of the differentiation of cotton (Gossypium hirsutum L.) fiber cells. Planta 175:254-258.

    Article  Google Scholar 

  • Graves, D.A. and J.M. Stewart. 1988b. Analysis of the protein constituency of developing cotton fibers. J. Exp. Bot. 39:59-69.

    Article  Google Scholar 

  • Halloin, J.M. 1976. Inhibition of cottonseed germination with abscisic acid and its reversal. Plant Physiol. 57:454-455.

    Article  PubMed  CAS  Google Scholar 

  • Hendrix, D.L. 1990. Carbohydrates and carbohydrate enzymes in developing cotton ovules. Physiol. Plant. 78:85-92.

    Article  CAS  Google Scholar 

  • Hendrix, D.L. and J.W. Radin. 1984. Seed development in cotton: feasibility of a hormonal role for abscisic acid in controlling vivipary. J. Plant Physiol. 117:211-221.

    CAS  Google Scholar 

  • Hoson, T. and Y. Masuda. 1992. Relationship between polysaccharide synthesis and cell wall loosening in auxininduced elongation of rice coleoptile segments. Plant Sci. 83:149-154.

    Article  CAS  Google Scholar 

  • Hsu, C.L. and J.M. Stewart. 1976. Callus induction by (2- chloroethyl) phosphonic acid on cultured cotton ovules. Physiol. Plant. 36:150-153.

    Article  CAS  Google Scholar 

  • Hughes, D.W. and G.A. Galau. 1989. Temporally modular gene expression during cotyledon development. Genes Dev. 3:358-369.

    Article  PubMed  CAS  Google Scholar 

  • Hughes, D.W. and G.A. Galau. 1991. Developmental and environmental induction of Lea and LeaA mRNAs and the postabscission program during embryo culture. Plant Cell 3:605-618.

    Article  PubMed  CAS  Google Scholar 

  • Hush, J.M. and R.L. Overall. 1992. Re-orientation of cortical F-actin is not necessary for wound-induced microtubule re-orientation and cell polarity establishment. Protoplasma 169:97-106.

    Article  Google Scholar 

  • Ihle, J.N. and L.S. Dure, III. 1972. The developmental biochemistry of cottonseed embryogenesis and germination. III. Regulation of the biosynthesis of enzymes utilized in germination. J. BioI. Chem. 247:5048-5055.

    CAS  Google Scholar 

  • Jensen, W.A. 1968. Cotton embryogenesis: the zygote. Planta 79:346-366.

    Article  Google Scholar 

  • Kloth, R.H. 1992. Variability of malate dehydrogenase among cotton cultivars with differing fiber traits. Crop Sci. 32:617-621.

    Article  CAS  Google Scholar 

  • Kloth, R.H. and R.B. Turley. 1997. Homologue of ribosomal protein RL37a from cotton (Gossypium hirsutum L.). Plant Physiol. 120:933.

    Google Scholar 

  • Koontz, D.A. and J.H. Choi. 1993. Evidence for phosphorylation of tubulin in carrot suspension cells. Physiol. Plant. 87:576-583.

    Article  CAS  Google Scholar 

  • Lee, G. 1993. Non-motor microtubule-associated proteins. Curr. Opin. Cell Biol. 5:88-94.

    Article  CAS  Google Scholar 

  • Li, L. and R.M. Brown, Jr. 1993. β-Glucan synthesis in the cotton fiber. II. Regulation and kinetic properties of β-glucan synthases. Plant Physiol. 101:1143-1148.

    PubMed  CAS  Google Scholar 

  • Lipe, J.A. and P.W. Morgan. 1973. Location of ethylene production in cotton flowers and fruits. Planta 115:93-96.

    Article  CAS  Google Scholar 

  • Maeshima, M. 1990. Development of vacuolar membranes during elongation of cells in mung bean hypocotyls. Plant Cell Physiol. 31:311-317.

    CAS  Google Scholar 

  • Maeshima, M. 1992. Characterization of the major integral proteins of vacuolar membrane. Plant Physiol. 98:1248-1254.

    Article  PubMed  CAS  Google Scholar 

  • Marks, M.D. and J.J. Esch. 1992. Trichome formation in Arabidopsis as a genetic model system for studying cell expansion. Current Topics in Plant Biochem. and Physiol. 11:131-142.

    Google Scholar 

  • Martinoia, E. and D. Rentsch. 1994. Malate compartmentalization- responses to a complex metabolism. Ann. Rev. Plant Physiol. 45:447-468.

    Article  CAS  Google Scholar 

  • Masucci, J.D. and J.W. Schiefelbein. 1996. Hormones act downstream of TTG and GL2 to promote root hair outgrowth during epidermis development in the Arabidopsis root. Plant Cell 8:1505-1517.

    Article  PubMed  CAS  Google Scholar 

  • Mauney, J.R. 1961. The culture in vitro of immature cotton embryos. Bot. Gaz. 122:205-209.

    Article  Google Scholar 

  • McCann, M.C. and K. Roberts. 1994. Changes in cell wall architecture during cell elongation. J. Exp. Bot. 45:1683-1691.

    CAS  Google Scholar 

  • McQueen-Mason, S. and D.J. Cosgrove. 1994. Disruption of hydrogen bonding between plant cell wall polymers by proteins that induce wall extension. Proc. Natl. Sci. USA 91:6574-6578.

    Article  CAS  Google Scholar 

  • Meinert, M.C. and D.P. Delmer. 1977. Changes in biochemical composition of the cell wall of the cotton fiber during development. Plant Physiol. 59:1088-1097.

    Article  PubMed  CAS  Google Scholar 

  • Meredith, W.R., Jr. 1984. Influence of leaf morphology on lint yield of cotton - enhancement by the sub okra trait. Crop Sci. 24:855-857.

    Article  Google Scholar 

  • Miller, M.E. and P.S. Chourey. 1992. The maize invertasedeficient minature-1 seed mutation is associated with aberrant pedicel endosperm development. Plant Ce114:297-305.

    Google Scholar 

  • Mizuno, K. 1993. Induction of cold stability of microtubules in cultured tobacco cells. Plant Physiol. 100:740-748.

    Article  Google Scholar 

  • Mizuno, K. 1994. Inhibition of gibberellin-induced elongation, reorientation of cortical microtubules and change of isoform of tubulin in epicotyl segments of azuki bean by protein kinase inhibitors. Plant Cell Physiol. 35:1149-1157.

    CAS  Google Scholar 

  • Montezinos, D. and D.P. Delmer. 1980. Characterization of inhibitors of cellulose synthesis in cotton fibers. Planta 148:305-311.

    Article  CAS  Google Scholar 

  • Mueller, W.C. and C.H. Beckman. 1978. Ultrastructural localization of polyphenoloxidase and peroxidase in roots and hypocotyls of cotton seedlings. Can. J. Bot. 56:1579-1587.

    Article  CAS  Google Scholar 

  • Naithani, S.C. 1987. The role of IAA oxidase, peroxidase and polyphenol oxidase in the fiber initiation on the cotton ovules. Beitr. Biol. Pflanzen. 62:79-90.

    Google Scholar 

  • Pettigrew, W.T. 1995. Source-to-sink manipulation effects on cotton fiber quality. Agron. J. 87:947-952.

    Article  Google Scholar 

  • Phillips, A.L. and A.K. Huttly. 1994. Cloning of two gibberellin- regulated cDNAs from Arabidopsis thaliana by subtractive hybridization: Expression of the tonoplast water channel, γ-TIP, is increased by GA3. Plant Mol. Biol. 24:603-615.

    Article  PubMed  CAS  Google Scholar 

  • Ramsey, J.C. and J.D. Berlin. 1976. Ultrastructure of early stages of cotton fiber differentiation. Bot. Gaz. 137:11-19.

    Article  Google Scholar 

  • Raschke, K. 1979. Movements of stomata. In: W. Haupt and E. Feinleib (eds.). Encyclopedia of Plant Physiology. 7: Physiology of Movements. Springer-Verlag, Berlin.

    Google Scholar 

  • Reeves, R.G. and J.O. Beasley. 1935. The development of the cotton embryo. J. Agric. Res. 51:935-944.

    CAS  Google Scholar 

  • Roelofsen, P.A. 1951. Orientation of cellose fibrils in the cell wall of growing cotton hairs and its bearing on the physiology of cell wall growth. Biochem. Biophys. Acta 7:43-53.

    Article  CAS  Google Scholar 

  • Rollins, M.L. 1945. Applications of nitrogen dioxide treatment to the microscopy of fiber cell wall structure. Text. Res. J. 15:65-77. ]\

    Article  CAS  Google Scholar 

  • Ryser, U. 1992. Ultrastructure of the epidermis of developing cotton (Gossypium) seeds: Suberin, pits, plasmodesmata, and their implications for assimilate transport into cotton fibers. Am. J. Bot. 79:14-22.

    Article  Google Scholar 

  • Schmidt, J.R. and R. Wells. 1986. Recovery of soluble proteins from glanded cotton tissues with amines. Anal. Biochem. 154:224-229.

    Article  Google Scholar 

  • Schmidt, J.R. and R. Wells. 1990. Evidence for the presence of gossypol in malvaceous plants other than those in the “cotton tribe.” J. Agric. Food Chem. 38:505-508.

    Article  CAS  Google Scholar 

  • Scott, N.S. and J.V. Possingham. 1980. Chloroplast DNA in expanding spinach leaves. J. Exp. Bot. 31:1081-1092.

    Article  Google Scholar 

  • Seagull, R.W. 1986. Changes in microtubule organization and wall microfibril orientation during in vitro cotton fiber development: an immunofluorescent study. Can. J. Bot. 64:1373-1381.

    Article  Google Scholar 

  • Seagull, R.W. 1993. Cytoskeletal involvement in cotton fiber growth and development. Micron 24:643-660.

    Article  Google Scholar 

  • Seagull, R.W. and J.D. Timpa. 1990. The relationship between reversal frequency and fiber strength. p. 626. In: Proc. Beltwide Cotton Conf., National Cotton Council of America, Memphis, Tenn.

    Google Scholar 

  • Sonobe, S. 1990. ATP-dependent depolymerization of cortical microtubules by an extract in tobacco BY-2 cells. Plant Cell Physiol. 31:1147-1153.

    CAS  Google Scholar 

  • Speer, M. and W.M. Kaiser. 1991. Ion relations of symplastic and apoplastic space in leaves from Spinacia oleracea L. and Pisum sativum L. under salinity. Plant Physiol. 97:900-997.

    Article  Google Scholar 

  • Stewart, J.McD. 1975. Fiber initiation on the cotton ovule (Gossypium hirsutum). Amer. J. Bot. 62:723-730.

    Article  Google Scholar 

  • Sze, H. 1985. H+-translocating ATPases: advances using membrane vesicles. Ann. Rev. Plant PhysioI. 36:175-208.

    Article  CAS  Google Scholar 

  • Taiz, L. 1994. Expansins: Proteins that promote cell wall loosening in plants. Proc. Natl. Acad. Sci. USA 91:7387-7389.

    Article  PubMed  CAS  Google Scholar 

  • Tan, Z. and W.F. Boss. 1991. Association of phosphatidylinositol kinase, phosphatidylinositol monophosphate kinase wth the cytoskeleton and F-actin fractions of carrot (Daucus carota L.) cells grown in suspension culture. Response to cell wall degrading enzymes. Plant Physiol. 100:2116-2120.

    Article  Google Scholar 

  • Theodorou, M.E. and W.C. Plaxton. 1996. Purification and characterization of pyrophosphate-dependent phosphofructokinase from phosphate-starved Brassica nigra suspension cells. Plant Physiol. 112:343-351.

    Article  PubMed  CAS  Google Scholar 

  • Triplett, B.A. and R.S. Quatrano. 1982. Timing, localization and control of wheat germ agglutinin synthesis in developing wheat embryos. Dev. Biol. 91:491-496.

    Article  PubMed  CAS  Google Scholar 

  • Turley, R.B. and D.L. Ferguson. 1996. Changes of ovule proteins during early fiber development in a normal and a fiberless line of cotton (Gossypium hirsutum L.). J. Plant Physiol. 149:695-702.

    CAS  Google Scholar 

  • Wäfler, D. and H. Meier. 1994. Enzyme activities in developing cotton fibres. Plant Physiol. Biochem. 32:697702.

    Google Scholar 

  • Warner, H.L. and A.C. Leopold. 1969. Ethylene evolution from 2-chloroethyl phosphonic acid. Plant Phyiol. 44:156-158.

    Article  CAS  Google Scholar 

  • Wedding, R.T. 1989. Malic enzymes of higher plants. Plant Physiol. 90:367-371.

    Article  PubMed  CAS  Google Scholar 

  • White, P.J. and J.A. Smith. 1989. Proton and anion transport at the tonoplast in crassulacean acid metabolism plants: specificity of the malate-influx system in Klanchoe daigremontiana. Planta 179:265-274.

    Article  CAS  Google Scholar 

  • Yatsu, L.Y. and T.J. Jacks. 1981. An ultrastructural study of the relationship between microtubules and microfibrils in cotton (Gossypium hirsutum L.) cell wall reversals. Amer. J. Bot. 68:771-777.

    Article  Google Scholar 

  • Zhu, G.I. and J.S. Boyer. 1992. Enlargement in Chara studied with a trugor clamp. Plant Physiol. 100:2071-2080.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kloth, R.H., Turley, R.B. (2010). Physiology of Seed and Fiber Development. In: Stewart, J.M., Oosterhuis, D.M., Heitholt, J.J., Mauney, J.R. (eds) Physiology of Cotton. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3195-2_11

Download citation

Publish with us

Policies and ethics