Skip to main content

Functional and Nanostructured Materials Investigated by XPS and NEXAFS Spectroscopies

  • Chapter
  • First Online:

Abstract

Surface properties of materials play an important role in a number of applications of technologically relevant materials. In the framework of the interest to the soft matter nanostructured systems it emerges the relevance of the task by surface and interfaces, providing the effectiveness of adhesion, presence of molecular organization at nanoscale and surface active sites. In this chapter the information gained about surface study of functional and nanostructured materials have been reviewed as concerning two main investigation methodologies: NEXAFS (Near Edge X-ray Absorption Fine Structure) and XPS (X-ray Photoelectron Spectroscopy). A rather extensive, even if not exhaustive, description of the fundamental basis of the two selected spectroscopies has been illustrated, developing all concepts from an elementary level. Special attention, concerning the investigation methods, has been dedicated to the use of synchrotron plants as sources of radiation with all the peculiarity deriving from this. Several selected, state-of-the-art, significant investigations have been taken as major examples and the achievable information have been discussed, ranging from simple to complex molecular systems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Seki K, Nakagawa K, Sato N (1980) Chem Phys Lett 70:220–223

    CAS  Google Scholar 

  2. Stöhr J (1991) In: Gomer (ed) NEXAFS spectroscopy Springer series in surface sciences, Springer, Verlag

    Google Scholar 

  3. Fuchs O, Maier F, Weinhardt L, Weigand M, Blum M, Zharnikov M, Denlinger J, Grunze M, Heske C, Umbach E (2008) J Nucl Instrum Methods A 585:172–177

    CAS  Google Scholar 

  4. Krishnamoorthy S, Pugin R, Brugger J, Heinzelmann H, Hinderling C (2006) Adv Funct Mater 16:1469–1475

    CAS  Google Scholar 

  5. Hamley IW (2003) Angew Chem Int Ed 42:1692–1712

    CAS  Google Scholar 

  6. Hamley IW (2003) Nanotechnology 14:R39–R54

    CAS  Google Scholar 

  7. Ikkala O, ten Brinke G (2004) Chem Commun 19:2131–2137

    Google Scholar 

  8. Krausch G, Magerle R (2002) Adv Mater 14:1579–1583

    CAS  Google Scholar 

  9. Park C, Yoon J, Thomas EL (2003) Polymer 44:6725–6760

    CAS  Google Scholar 

  10. Segalman RA (2005) Mater Sci Eng R 48:191–226

    Google Scholar 

  11. Tseng AA., Notargiacomo A (2005) J Nanosci Nanotechnol 5:683–702

    CAS  Google Scholar 

  12. Nilsson D, Watcharinyanon S, Eng M, Li L, Moons E, Johansson LS, Zharnikov M, Shaporenko A, Albinsson B, Martensson J (2007) Langmuir 23:6170–6181

    CAS  Google Scholar 

  13. Zharnikov M, Grunze M (2001) J Phys Condens Matter 13(49):11333–11365

    CAS  Google Scholar 

  14. Ågren H, Vahtras O, Carravetta V (1995) Chem Phys 196(1–2):47–58

    Google Scholar 

  15. Minkov I, Gel’mukhanov F, Friedlein R, Osikovicz W, Suess C, Ohrwall G, Sorensen SL, Braun S, Murdey R, Salaneck WR, Ågren H (2004) J Chem Phys 121(12):5733–5739

    CAS  Google Scholar 

  16. Yokoyama T, Seki K, Morisada I, Edamatsu K, Ohta T (1990) Phys Scr 41(1):189–192

    CAS  Google Scholar 

  17. Grave C, Risko C, Shaporenko A, Wang Y, Nuckolls C, Ratner M, Rampi MA, Zharnikov M, (2007) Adv Funct Mater 17:3816–3828

    CAS  Google Scholar 

  18. Frey S, Stadler V, Heister K, Eck W, Zharnikov M, Grunze M, Zeysing B, Telfort A (2001) Langmuir 17:2408–2415

    CAS  Google Scholar 

  19. Zharnikov M, Grunze M (2001) J Phys Condens Matter 13:11333–11365

    CAS  Google Scholar 

  20. Ulman A (1996) Chem Rev 96:1533–1554

    CAS  Google Scholar 

  21. Leznoff CC (1993) In: Lever ABP (ed) Phtalocyanines, properties and applications, vol 3. VCH Publishers, New York

    Google Scholar 

  22. Kadish KM, Smith KM (2000) In: Guilard R (ed), The porphyrin handbook, vol 1. Academic Press, San Diego

    Google Scholar 

  23. Arima V, Matino F, Thompson J, Del Sole R, Mele G, Vasapollo G, Cingolani R, Rinaldi R, Blyth RIR (2005) Appl Surf Sci 248:40–44

    CAS  Google Scholar 

  24. de Jong MP, Friedlein R, Sorensen SL, Öhrwall G, Osikowicz W, Tengsted C, Jönsson SKM, Fahlman M, Salaneck WR (2005) Phys Rev B 72:035448–035456

    Google Scholar 

  25. Okajima T, Yamamoto Y, Ouchi Y, Seki K (2001) J Electron Spectrosc Rel Phenom 114–116:849–854

    Google Scholar 

  26. Chen JG (1997) Surf Sci Rep 30:1–3

    CAS  Google Scholar 

  27. Krasnikov SA, Preobrajenski AB, Sergeeva NN, Brzhezinskaya MM, Nesterov MA, Cafolla AA, Senge MO, Vinogradov AS (2007) Chem Phys 332:318–324

    CAS  Google Scholar 

  28. Jo T, Tanaka A (2001) J Electron Spectrosc Rel Phenom 117–118:397–411

    Google Scholar 

  29. Nesvizhskii AI, Ankudinov AL, Rehr JJ, Baberschke K (2000) Phys Rev B 62:15295–15298

    CAS  Google Scholar 

  30. Cotton FA, Wilkinson G (1972) In Advanced inorganic chemistry, 3rd edn, Wiley, New York

    Google Scholar 

  31. Rosa A, Ricciardi G, Baerends EJ, van Gisbergen SJA (2001) J Phys Chem A 105: 9780–9791

    Google Scholar 

  32. Chen W, Gao XY, Qi DC, Chen S, Chen ZK, Wee ATS (2007) Adv Funct Mater 17: 1339–1344

    CAS  Google Scholar 

  33. Lee KS, Smith TJ, Dickey KC, Yoo JE, Stevenson KJ, Loo Y-L (2006) Adv Funct Mater 16:2409–2414

    CAS  Google Scholar 

  34. Fritz SE, Martin SM, Frisbie CD, Ward MD, Toney MF (2004) J Am Chem Soc 126: 4084–4085

    CAS  Google Scholar 

  35. Ihm K, Kim B, Kang T-H, Kim K-J, Joo MH, Kim TH, Yoon SS, Chung S (2006) Appl Phys Lett 89:033504–033504_3

    Google Scholar 

  36. Yamada H, Imahori H, Nishimura Y, Yamazaki I, Ahn TK, Kim SK, Kim D, Fukuzumi S (2003) J Am Chem Soc 125:9129–9139

    CAS  Google Scholar 

  37. Polzonetti G, Battocchio C, Goldoni A, Larciprete R, Carravetta V, Paolesse R, Russo MV (2004) Chem Phys 297:307–314

    CAS  Google Scholar 

  38. Copper G, Gordon M, Tulumello D, Turci CC, Kaznatchev K, Hitchcock AP (2004) J Electron Spectrosc Relat Phenom 137–140:795–799

    Google Scholar 

  39. Stöhr J (1992) In: NEXAFS spectroscopy; Springer tracts in surface science, vol 25. Springer, Berlin

    Google Scholar 

  40. Gordon ML, Cooper G, Morin C, Araki T, Turci CC, Katznatcheev K, Hitchcock AP (2003) J Phys Chem A 107:6144–6159

    CAS  Google Scholar 

  41. Boese J, Osanna A, Jacobsen C, Kirz J (1997) J Electron Spectrosc Relat Phenom 85:9–15

    CAS  Google Scholar 

  42. Zubavichus Y, Zharnikov M, Schaporenko A, Grunze M (2004) J Electron Spectrosc Relat Phenom 134:25–33

    CAS  Google Scholar 

  43. Zubavichus Y, Shaporenko A, Grunze M, Zharnikov M (2005) J Phys Chem A 109: 6998–7000

    CAS  Google Scholar 

  44. Kaznacheyev K, Osanna A, Jacobsen C, Plashkevych O, Vahtras O, Ågren H, Carravetta V, Hitchcock AP (2002) J Phys Chem A 106:3153–3168

    CAS  Google Scholar 

  45. Stewart-Ornstein J, Hitchcock AP, Cruz DH, Henklein P, Overhage J, Hilpert K, Hale JD, Hancock REW (2007) J Phys Chem B 111:7691–7699

    CAS  Google Scholar 

  46. Gordon ML, Cooper G, Morin C, Araki T, Turci CC, Kaznatcheev K, Hitchcock AP (2003) J Phys Chem A 107:6144–6159

    CAS  Google Scholar 

  47. Kirz J, Jacobsen C, Howells M (1995) Q Rev Biophys 28:33–130

    CAS  Google Scholar 

  48. Ade H (1998) X-ray spectromicroscopy. In: Samson JAR, Ederer DL (eds) Experimental methods in the physical sciences, vol 32. Academic Press, New York, pp 225–261

    Google Scholar 

  49. Ade H, Urquhart SG (2002) NEXAFS spectroscopy and microscopy of natural and synthetic polymers. In: Sham TK (ed) Chemical applications of synchrotron radiation. World Scientific, Singapore, pp 285–355

    Google Scholar 

  50. Kilcoyne ALD, Tylisczak T, Steele WF, Fakra S, Hitchcock P, Franck K, Anderson E, Harteneck B, Rightor EG, Mitchell GE, Hitchcock AP, Yang L, Warwick T, Ade H (2003) J Synchrotron Radiat 10:125–136

    CAS  Google Scholar 

  51. Liu X, Jang C-H, Zheng F, Jurgensen A, Denlinger JD, Dickson KA, Raines RT, Abbott NL, Himpsel FJ (2006) Langmuir 22:7719–7725

    CAS  Google Scholar 

  52. Carravetta V, Plashkevych O, Ågren H (1998) J Chem Phys 109:1456–1464

    CAS  Google Scholar 

  53. Hunt WJ, Goddard WA (1969) III Chem Phys Lett 3:414–418

    CAS  Google Scholar 

  54. Malmsten M (2003) Biopolymers at interfaces. Marcel Dekker, Basel

    Google Scholar 

  55. Castner DG, Ratner BD (2002) Surf Sci 500:28–60

    CAS  Google Scholar 

  56. Tirrell M, Kokkoli E, Biesalski M (2002) Surf Sci 500:61–83

    CAS  Google Scholar 

  57. Ostuni E, Chapman RG, Liang MN, Meluleni G, Pier G, Ingber DE, Whitesides GM (2001) Langmuir 17:6336–6343

    CAS  Google Scholar 

  58. Li L, Hitchcock AP, Robar N, Cornelius R, Brash JL, Scholl A, Doran A (2006) J Phys Chem B110:16763–16773

    CAS  Google Scholar 

  59. Anders S, Padmore HA, Duarte RM, Renner T, Stammler T, Scholl A, Scheinfein MR, Stöhr J, Séve L, Sinkovic B (1999) Rev Sci Instrum 70:3973–3981

    CAS  Google Scholar 

  60. Hitchcock AP, Morin C, Heng YM, Cornelius RM, Brash JL (2002) J Biomater Sci Polym Ed 13:919–938

    CAS  Google Scholar 

  61. Vyalikh DV, Kirchner A, Kade A, Danzenbacher S, Dedkov Yu S, Mertig M, Molodtsov SL (2006) J Phys Condens Matter 18:S131–S144

    CAS  Google Scholar 

  62. Moerner WE, Silence SM (1994) Chem Rev 94 (1):127–155

    CAS  Google Scholar 

  63. Dalton LR, Harper AW, Ghosn R, Steier WH, Ziari M, Fetterman H, Shi Y, Mustacich RV, Jen AK-Y, Shea KJ (1995) Chem Mater 7 (6):1060–1081

    CAS  Google Scholar 

  64. Burland DM, Miller RD, Walsh CA (1994) Chem Rev 94 (1):31–75

    CAS  Google Scholar 

  65. Marks TJ, Ratner MA (1995) Angew Chem Int Ed Engl 34:155–173

    CAS  Google Scholar 

  66. Lehn J-M (1988) Angew Chem Int Ed Engl 27:89–112

    Google Scholar 

  67. Ashwell GJ, Jackson PD, Crossland WA (1994) Nature 368; 438–440

    Google Scholar 

  68. Yitzchaik S, Marks TJ (1996) Acc Chem Res 29:197–202

    CAS  Google Scholar 

  69. Katz HE, Wilson WL, Scheller G (1994) J Am Chem Soc 116:6636–6640

    CAS  Google Scholar 

  70. Bubeck RA, Dvornic PR, Hu J, Hexemer A, Li X, Keinath SE, Fischer DA (2005) Macromol Chem Phys 206:1146–1153

    CAS  Google Scholar 

  71. Briggs D, Rivière JC (1992) In: Briggs D, Seah MP (eds) Practical surface analysis, 2nd edn, vol 1. John Wiley, Chichester, pp 85–143

    Google Scholar 

  72. Mitzi DB (2001) Chem Mater 13:3283–3298

    CAS  Google Scholar 

  73. Di Salvo F (1987) J Advancing Materials Research. National Academy Press, Washington, DC

    Google Scholar 

  74. Costescu RM, Cahill DG, Fabreguette FH, Sechrist ZA, George SM (2004) Science 303:989–990

    CAS  Google Scholar 

  75. Petty MC (1996) Langmuir-blodgett films: an introduction. Cambridge University Press, Cambridge, UK

    Google Scholar 

  76. Ulman A (1991) An introduction to ultrathin organic films from Langmuir-Blodgett to self-assembly. Academic Press, Boston, MA

    Google Scholar 

  77. Black CT, Guarini KW, Milkove KR, Baker SM, Russell TP, Tuominen MT (2001) Appl Phys Lett 79:409–411

    CAS  Google Scholar 

  78. Black CT, Guarini KW, Zhang Y, Kim HJ, Benedict J, Sikorski E, Babich IV, Milkove KR (2004) IEEE Electron Device Lett 25:622–624

    CAS  Google Scholar 

  79. Guarini KW, Black CT, Milkove KR, Sandstrom RL (2001) J Vac Sci Technol B 19: 2784–2788

    CAS  Google Scholar 

  80. Guarini KW, Black TC, Zhang Y, Kim H, Sikorski EM, Babich IV (2002) J Vac Sci Technol B 20:2788–2792

    CAS  Google Scholar 

  81. Krishnamoorthy S, Pugin R, Brugger J, Heinzelmann H, Hinderling C (2006) Adv Funct Mater16:1469–1475

    CAS  Google Scholar 

  82. Winey KI, Thomas EL, Fetters LJ (1991) Macromolecules 24:6182–6188

    CAS  Google Scholar 

  83. Winey KI, Thomas EL, Fetters LJ (1991) J Chem Phys 95:9367–9375

    CAS  Google Scholar 

  84. Winey KI, Thomas EL, Fetters LJ (1992) Macromolecules 25:2645–2650

    CAS  Google Scholar 

  85. Tanaka H, Hasegawa H, Hashimoto T (1991) Macromolecules 24:240–251

    CAS  Google Scholar 

  86. Hashimoto T, Tanaka H, Hasegawa H (1990) Macromolecules 23:4378–4386

    CAS  Google Scholar 

  87. Riess G (2003) Prog Polym Sci 28:1107–1170

    CAS  Google Scholar 

  88. Meiners JC, Ritzi A,. Raiflovich MH, Sokolov J, Mlynek J, Krausch G (1995) Appl Phys A 61:529–524

    Google Scholar 

  89. Li Z, Zhao W, Liu Y, Rafailovich MH, Sokolov J, Khougaz K, Eisenberg A, Lennox RB, Krausch G (1996) J Am Chem Soc 118:10892–10893

    CAS  Google Scholar 

  90. Meiners JC, Ritzi A, Mlynek J, Elbs H, Krausch G (1997) Macromolecules 30:4945–4951

    CAS  Google Scholar 

  91. Meiners JC, Elbs H, Ritzi A, Mlynek J, Krausch G (1996) J Appl Phys 80:2224–2227

    CAS  Google Scholar 

  92. Boontongkong, Cohen RE (2002) Macromolecules 35:3647–3652

    Google Scholar 

  93. Krishnamoorthy S, Pugin R, Brugger J, Heinzelmann H, Hoogerwerf AC, Hinderling C (2006) Langmuir 22:3450–3452

    CAS  Google Scholar 

  94. Elbs H, Fukunaga K, Stadler R, Sauer G, Magerle R, Krausch G (1999) Macromolecules 32:1204–1211

    CAS  Google Scholar 

  95. Sohn BH, Yoo SI, Seo BW, Yun SH, Park SM (2001) J Am Chem Soc 123:12734–12735

    CAS  Google Scholar 

  96. Lee BH, Ryu MK, Choi S-Y, Lee K-H, Im S, Sung MM (2007) J Am Chem Soc 29: 16034–16041

    Google Scholar 

  97. Dubowski Y, Vieceli J, Tobias DJ, Gomez AL, Nizkorodov SA, McIntire TM, Finlayson-Pitts BJ (2004) J Phys Chem A 108:10473–10485

    CAS  Google Scholar 

  98. Fiegland LR, Fleur MMS, Morris JR (2005) Langmuir 21:2660–2661

    CAS  Google Scholar 

  99. Kazzi Y, Awada H, David M-O, Nardin M (2007) Surf Interface Anal 39:691–697

    CAS  Google Scholar 

  100. Stapleton JJ, Harder P, Daniel TA, Reinard MD, Yao Y, Price DW, Tour JM, Allara DL (2003) Langmuir 19(20):8245–8255

    CAS  Google Scholar 

  101. Murayama H, Narushima T, Negishi Y, Tsukuda T (2004) J Phys Chem B 108:3496–3503

    CAS  Google Scholar 

  102. Chae DH, Berry JF, Jung S, Cotton FA, Murillo CA, Yao Z (2006) Nano Lett 6:165–168

    CAS  Google Scholar 

  103. Kubatkin S, Danilov A, Hjort M, Cornil J, Bredas JL, Stuhr-Hansen N, Hedgard P, Bjornholm T (2003) Nature 425:698–701

    CAS  Google Scholar 

  104. Park H, Park J, Lim AKL, Anderson EH, Alivisatos AP, McEuen PL (2000) Nature 407: 57–60

    Google Scholar 

  105. Park J, Pasupathy AN, Goldsmith JI, Chang C, Yaish Y, Petta JR, Rinkoski M, Sethna JP, Abruna HD, McEuen PL, Ralph DC (2002) Nature 417:722–725

    CAS  Google Scholar 

  106. Yu LH, Natelson D (2004) Nano Lett 4:79–83

    CAS  Google Scholar 

  107. Yu LH, Keane ZK, Ciszek JW, Cheng L, Stewart MP, Tour JM, Natelson D (2004) Phys Rev Lett 93:266802–266805

    CAS  Google Scholar 

  108. Liang WJ, Shores MP, Bockrath M, Long JR, Park H (2002) Nature 417:725–729

    CAS  Google Scholar 

  109. Metzger RM (2003) Chem Rev 103:3803–3834

    CAS  Google Scholar 

  110. McCreery R, Dieringer J, Solak AO, Snyder B, Nowak AM, McGovern WR, DuVall S (2003) J Am Chem Soc 125:10748–10758

    CAS  Google Scholar 

  111. Cai L, Cabassi MA, Yoon H, Cabarcos OM, McGuiness CL, Flatt AK, Allara DL, Tour JM, Mayer TS (2005) Nano Lett 5:2365–2372

    CAS  Google Scholar 

  112. Blum AS, Kushmerick JG, Long DP, Patterson CH, Yang JC, Henderson JC, Yao YX, Tour JM, Shashidhar R, Ratna BR (2005) Nat Mater 4:167–172

    CAS  Google Scholar 

  113. Chen J, Reed MA, Rawlett AM, Tour JM (1999) Science 286:1550–1552

    CAS  Google Scholar 

  114. Rawlett AM, Hopson TJ, Nagahara LA, Tsui RK, Ramachandran GK, Lindsay SM (2002) Appl Phys Lett 81:3043–3045

    CAS  Google Scholar 

  115. Fan FRF, Yao YX, Cai LT, Cheng L, Tour JM, Bard AJ (2004) J Am Chem Soc 126: 4035–4042

    CAS  Google Scholar 

  116. Kim B, Beebe JM, Olivier C, Rigaut S, Touchard D, Kushmerick JG, Zhu X–Y, Frisbie D (2007) J Phys Chem C 111:7521–7526

    CAS  Google Scholar 

  117. Hatton RA, Blanchard NP, Stolojan V, Miller AJ, Ravi S, Silva P (2007) Langmuir 23: 6424–6430

    CAS  Google Scholar 

  118. Kasemo B (1998) Curr Opin Solid State Mater Sci 3:451–459

    CAS  Google Scholar 

  119. Holmes TC (2002) Trends Biotechnol 20:16–21

    CAS  Google Scholar 

  120. Zhang S, Holmes TC, Lockshin C, Rich A (2002) Proc Natl Acad Sci USA 90:3334–3338

    Google Scholar 

  121. Ma PX (2004) In: Kroschowitz JI (ed) Encyclopedia of polymer science and technology, 3rd edn. John Wiley and Sons, NY

    Google Scholar 

  122. Uvdal K, Bodoe P, Liedberg B (1992) J Colloid Interface Sci 149:162–173

    CAS  Google Scholar 

  123. Ihs A, Liedberg B, Uvdal K, Toernkvist C, Bodoe P, Lundstroem I (1990) J Colloid Interface Sci 140:192–206

    CAS  Google Scholar 

  124. Liedberg B, Lundstroem I, Wu CR, Salaneck WR (1985) J Colloid Interface Sci 108: 123–132

    CAS  Google Scholar 

  125. Liedberg B, Ivarsson B, Lundstroem I, Salaneck WR (1985) Prog Colloid Polym Sci 70: 67–75

    CAS  Google Scholar 

  126. Williams J, Haq S, Raval R (1996) Surf Sci 368:303–309

    CAS  Google Scholar 

  127. Barlow M, Kitching KJ, Haq S, Richardson NV (1998) Surf Sci 401:322–335

    CAS  Google Scholar 

  128. Booth NA, Woodruff DP, Schaff O, Gissel T, Lindsay R, Baumgartel P, Bradshaw AM (1998) Surf Sci 397:258–269

    CAS  Google Scholar 

  129. Hasselstrom J, Karis O, Nyberg M, Pettersson LGM, Weilnelt M, Wassdahl N, Nilsson A (2000) J Phys Chem B 104:11480–11483

    Google Scholar 

  130. Lofgren P, Krozer A, Lausmaa J, Kasemo B (1997) Surf Sci 370:277–292

    Google Scholar 

  131. Benninghoven A, Kempken M, Kluesener P (1998) Surf Sci 206:L927–L933

    Google Scholar 

  132. Holtkamp D, Kempken M, Kluesener P, Benninghoven A (1987) J Vac Sci Technol A 5:2912–2916

    CAS  Google Scholar 

  133. Holtkamp D, Lange W, Jirikowsky M, Benninghoven A (1984) Appl Surf Sci 17:296–308

    CAS  Google Scholar 

  134. Zubavichus Y, Zharnikov M, Yang Y, Fuchs O, Heske C, Umbach E, Tzvetkov G, Netzer FP, Grunze M (2005) J Phys Chem B 109:884–891

    CAS  Google Scholar 

  135. Hasselström J, Karis O, Weinelt M, Wassdahl N, Nilsson A, Nyberg M, Pettersson LGM, Samant MG, Stöhr J (1998) Surf Sci 407:221–236

    Google Scholar 

  136. Monti S, Carravetta V, Battocchio C, Iucci G, Polzonetti G (2008) Langmuir 24(7): 3205–3214

    CAS  Google Scholar 

  137. Bell CM, Yang HC, Malouk TE (1995) In: Materials chemistry: An emerging discipline. American Chemical Society, Washington, DC, pp. 212–230

    Google Scholar 

  138. Kumar A, Abbott NL, Kim E, Biebuyck HA, Whitesides GM (1995) Acc Chem Res 28: 219–226

    CAS  Google Scholar 

  139. Li D, Ratner MA, Marks TJ, Zhang C, Yang J, Wong GKJ (1990) J Am Chem Soc 112: 7389–7390

    CAS  Google Scholar 

  140. Katz HE, Scheller G, Putvinski TM, Schilling ML, Wilson WL, Chidsey CED (1991) Science 254:1485–1487

    CAS  Google Scholar 

  141. Lin W, Yitzchaik S, Lin W, Malik A, Durbin MK, Richter AG, Wong GK, Dutta P, Marks TJ (1995) Angew Chem Int Ed Engl 34:1497–1499

    CAS  Google Scholar 

  142. Freeman TL, Evans SD, Ulman A (1995) Langmuir 11:4411–4417

    CAS  Google Scholar 

  143. Ulman A (1995) In: Organic thin films and surfaces: Directions for the nineties. Academic Press: New York

    Google Scholar 

  144. Roscoe SB, Yitzchaik S, Kakkar AK, Marks TJ (1996) Langmuir 12:5338–5349

    CAS  Google Scholar 

  145. Albert IDL, Marks TJ, Ratner MA (1996) J Phys Chem 100:9714–9725

    CAS  Google Scholar 

  146. Lin W, Lin W, Wong GK, Marks TJ (1996) J Am Chem Soc 118:8034–8042

    CAS  Google Scholar 

  147. Lin W, Lee T-L, Lyman PF, Lee J, Bedyk MJ, Marks TJ (1997) J Am Chem Soc 119: 2205–2211

    CAS  Google Scholar 

  148. Roscoe SB, Yitzchaik S, Kakkar AK, Marks TJ, Lin W, Wong GK (1994) Langmuir 10:1337–1339

    CAS  Google Scholar 

  149. Moulder JF, Stickle WF, Sobol PE, Bomben KD (1992) In: Handbook of X-ray photoelectron spectroscopy. Perkin Elmer, Eden Praire, MN

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Polzonetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Polzonetti, G., Battocchio, C. (2010). Functional and Nanostructured Materials Investigated by XPS and NEXAFS Spectroscopies. In: Russo, M.V. (eds) Advances in Macromolecules. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3192-1_4

Download citation

Publish with us

Policies and ethics