Skip to main content

Papillary Thyroid Carcinoma: Detection of Copy Gain of Platelet Derived Growth Factor B Using Array Comparative Genomic Hybridization in Combination with Laser Capture Microdissection

  • Chapter
  • First Online:
Methods of Cancer Diagnosis, Therapy, and Prognosis

Part of the book series: Methods of Cancer Diagnosis, Therapy and Prognosis ((HAYAT,volume 7))

  • 1236 Accesses

Abstract

Papillary thyroid carcinoma (PTC), the most common endocrine malignancy, is thought to be a relatively genome stable neoplasm. In contrast to follicular thyroid carcinoma (FTC), almost all PTCs are diploid (Johannessen et al 1981). PTCs have been shown to be microsatellite stable (Soares et al 1997) and generally show low levels of loss of heterozygosity (Kitamura et al 2000; Gillespie et al 2000). The literature has shown that PTC is associated with several specific molecular genetic events, the best documented of which are ret/PTC rearrangements (REF) and the more recently described BRAF V600E mutation (Puxeddu et al 2004; Kimura et al 2003). Ret/PTC and BRAF mutations appear to largely occur in a mutually exclusive manner (Soares et al 2003). Activating point mutations of the RAS oncogene are also considered to account for the development of a small subset of adult sporadic PTCs (Namba et al 1990).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 349.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albrecht B, Hausmann M, Zitzelsberger H, Stein H, Siewert JR, Hopt U, Langer R, Hofler H, Werner M, Walch A (2004) Array-based comparative genomic hybridization for the detection of DNA sequence copy number changes in Barrett’s adenocarcinoma. J Pathol 203:780-788

    Article  PubMed  CAS  Google Scholar 

  • Bentz M, Plesch A, Stilgenbauer S, Dohner H, Lichter P (1998) Minimal sizes of deletions detected by comparative genomic hybridization. Genes Chromos Cancer 21:172-175

    Article  PubMed  CAS  Google Scholar 

  • Finn S, Smyth P, O’Regan E, Cahill S, Toner M, Timon C, Flavin R, O’Leary J, Sheils O (2007) Low-level genomic instability is a feature of papillary thyroid carcinoma: an array comparative genomic hybridization study of laser capture microdissected papillary thyroid carcinoma tumors and clonal cell lines. Arch Pathol Lab Med 131:65-73

    PubMed  CAS  Google Scholar 

  • Gillespie JW, Nasir A, Kaiser HE (2000) Loss of heterozygosity in papillary and follicular thyroid carcinoma: a mini review. In Vivo 14:139-140

    PubMed  CAS  Google Scholar 

  • Hui AB, Lo KW, Yin XL, Poon WS, Ng HK (2001) Detection of multiple gene amplifications in glioblastoma multiforme using array-based comparative genomic hybridization. Lab Invest 81:717-723

    Article  PubMed  CAS  Google Scholar 

  • Johannessen JV, Sobrinho-Simoes M, Tangen KO, Lindmo T (1981) A flow cytometric deoxyribonucleic acid analysis of papillary thyroid carcinoma. Lab Invest 45:336-341

    PubMed  CAS  Google Scholar 

  • Kallioniemi A, Kallioniemi OP, Sudar D, Rutovitz D, Gray JW, Waldman F, Pinkel D (1992) Comparative genomic hybridization for molecular cytogenetic analysis of solid tumours. Science 258:818-821

    Article  PubMed  CAS  Google Scholar 

  • Kallioniemi A, Kallioniemi OP, Piper J, Tanner M, Stokke T, Chen L, Smith HS, Pinkel D, Gray JW, Waldman FM (1994) Detection and mapping of amplified DNA sequences in breast cancer by comparative genomic hybridization. Proc Natl Acad Sci U S A 91:2156-2160

    Article  PubMed  CAS  Google Scholar 

  • Kimura ET, Nikiforova MN, Zhu Z, Knauf JA, Nikiforov YE, Fagin JA (2003) High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signalling pathway in papillary thyroid carcinoma. Cancer Res 63:1454-1457

    PubMed  CAS  Google Scholar 

  • Kitamura Y, Shimizu K, Tanaka S, Ito K, Emi M (2000) Association of allelic loss on 1q, 4p, 7q, 9p, 9q, and 16q with postoperative death in papillary thyroid carcinoma. Clin Cancer Res 6:1819-1825

    PubMed  CAS  Google Scholar 

  • Namba H, Rubin SA, Fagin JA (1990) Point mutations of ras oncogenes are an early event in thyroid tumourigenesis. Mol Endocrinol 4:1474-1479

    Article  PubMed  CAS  Google Scholar 

  • Pinkel D, Segraves R, Sudar D, Clark S, Poole I, Kowbel D, Collins C, Kuo WL, Chen C, Zhai Y, Dairkee SH, Ljung BM, Gray JW, Albertson DG (1998) High-resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet 20:207-211

    Article  PubMed  CAS  Google Scholar 

  • Puxeddu E, Moretti S, Elisei R, Romei C, Pascucci R, Martinelli M, Marino C, Avenia N, Rossi ED, Fadda G, Cavaliere A, Ribacchi R, Falorni A, Pontecorvi A, Pacini F, Pinchera A, Santeusanio F (2004) BRAF (V599E) mutation is the leading genetic event in adult sporadic papillary thyroid carcinomas. J Clin Endocrinol Metab 89:2414-2420

    Article  PubMed  CAS  Google Scholar 

  • Schraml P, Schwerdtfeger G, Burkhalter F, Raggi A, Schmidt D, Ruffalo T, King W, Wilber K, Mihatsch MJ, Moch H (2003) Combined array comparative genomic hybridization and tissue microarray analysis suggest PAK1 at 11q13.5-q14 as a critical oncogene target in ovarian carcinoma. Am J Pathol 163:985-992

    Article  PubMed  CAS  Google Scholar 

  • Soares P, dos Santos NR, Seruca R, Lothe RA, Sobrinho-Simoes M (1997) Benign and malignant thyroid lesions show instability at microsatellite loci. Eur J Cancer 33:293-296

    Article  PubMed  CAS  Google Scholar 

  • Soares P, Trovisco V, Rocha AS, Lima J, Castro P, Preto A, Maximo V, Botelho T, Seruca R, Sobrinho-Simoes M (2003) BRAF mutations and RET/PTC rearrangements are alternative events in the etiopathogenesis of PTC. Oncogene 22:4578-4580

    Article  PubMed  CAS  Google Scholar 

  • Yano Y, Uematsu N, Yashiro T, Hara H, Ueno E, Miwa M, Tsujimoto G, Aiyoshi Y, Uchida K (2004) Gene expression profiling identifies platelet-derived growth factor as a diagnostic molecular marker for papillary thyroid carcinoma. Clin Cancer Res 10:2035-2043

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen P. Finn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Finn, S.P., O’Leary, J.J., Sheils, O.M. (2010). Papillary Thyroid Carcinoma: Detection of Copy Gain of Platelet Derived Growth Factor B Using Array Comparative Genomic Hybridization in Combination with Laser Capture Microdissection. In: Hayat, M. (eds) Methods of Cancer Diagnosis, Therapy, and Prognosis. Methods of Cancer Diagnosis, Therapy and Prognosis, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3186-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-3186-0_26

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-3185-3

  • Online ISBN: 978-90-481-3186-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics