Skip to main content

Abstract

This chapter focuses on the state of the art in the field of nano-robotics by describing various molecular level systems and associated design and characterization issues. Nano-robots are controllable machines at the nanometer (10−9) or molecular scale that are composed of nano-scale components. With the modern scientific capabilities, it has become possible to attempt the creation of nanorobotic devices and interface them with the macro world for control. There are countless such machines that exist in nature and there is an opportunity to build more of them by mimicking nature. Even if the field of nanorobotics is fundamentally different than that of macro robots due to the differences in scale and material, there are many similarities in design and control techniques that eventually could be projected and applied. A roadmap towards the progression of this field is proposed and some design concept and philosophies are illustrated. There are many applications for nanorobotic systems and its biggest impact would be in the area of medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Calvacanti, A., Shririnzadeh, B., Freitas, R., Hogg, T.: Nanorobot architecture for medical target identification. Nanotechnology 19, 1–15 (2008)

    Google Scholar 

  2. Requicha, A.: Instrumented cellular systems. Nanomed. Nanotechnol. Biol. Med. 2(4), 278 (2006)

    Article  Google Scholar 

  3. Hogg, T., Kuekes, P.J.: Mobile microscopic sensors for high resolution in vivo diagnostics. Nanomed. Nanotechnol. Biol. Med. 2(4), 239–247 (2006)

    Article  Google Scholar 

  4. Dong, L.X., Nelson, B.J., Fukuda, T., Arai, F.: Towards linear nano servomotors. IEEE Trans. Autom. Sci. Eng. 3(3), 228–235 (2006)

    Article  Google Scholar 

  5. Subramanian, A., Dong, L.X., Nelson, B.J.: Batch fabrication of carbon nanotube bearings. Nanotechnology 18, 075703 (2007)

    Article  Google Scholar 

  6. Chirikjian, G.S., Kazerounian, K., Mavroidis, C.: Analysis and design of protein based nanodevices: challenges and opportunities in mechanical design. J. Mech. Des. 127, 695–698 (2005)

    Google Scholar 

  7. Yesin, K.B., Vollmers, K., Nelson, B.J.: Modeling and control of unthered biomicrorobots in a fluidic environment using electromagnetic fields. Int. J. Rob. Res. 25(5–6), 527–536 (2006)

    Article  Google Scholar 

  8. Mathieu, J.-B., Beaudoin, G., Martel, S.: Method of propulsion of a ferromagnetic core in the cardiovascular system through magnetic gradients generated by an MRI system. IEEE Trans. Biomed. Eng. 53(2), 292–299 (2006)

    Article  Google Scholar 

  9. Behkam, B., Sitti, M.: Design methodology for biomimetic propulsion of miniature swimming robots. J. Dyn. Syst. Meas. Control 128, 36–43 (2006)

    Article  Google Scholar 

  10. Martel, S., Tremblay, C., Ngakeng, S., Langlois, G.: Controlled manipulation and actuation of microobjects with magnetotactic bacteria. Appl. Phys. Lett. 89, 233804 (2006)

    Article  Google Scholar 

  11. Hamdi, M., Ferreira, A.: DNA nanorobotics. Microelectron. J. (2008)

    Google Scholar 

  12. Steager, E., Kim, C.B., Patel, J., Bith, S., Naik, C., Reber, L., Kim, M.J.: Control of microfabricated structures powered by flagellated bacteria using phototaxis. Appl. Phys. Lett. 90, 263901 (2006)

    Article  Google Scholar 

  13. Shingyoji, C., Higuchi, H., Yoshimura, M., Katayama, E., Yanagida, T.: Dynein arms are oscillating force generators. Nature 393, 711–714 (2001)

    Article  Google Scholar 

  14. Mitsuya, Y.: Significance of micro-nanomechatronics for an information-based society. In: The Fourth Symposium, Micro-Nanomechatronics for Information-Based Society, pp. 29–31, 31 Oct.–3 Nov. 2004

    Google Scholar 

  15. Iijima, S.: Nature (Lond.) 354(6348), 56–58 (1991)

    Article  Google Scholar 

  16. Hamada, N., Sawada, S.I., Oshiyama, A.: New onedimensional conductors, graphite microtubules. Phys. Rev. Lett. 68, 1579–1581 (1992)

    Article  Google Scholar 

  17. Dresselhaus, M.S., Dresselhaus, G., Eklund, P.C.: Science of Fullerenes and Carbon Nanotubes. Academic Press, San Diego (1995)

    Google Scholar 

  18. Tersoff, J., Ruoff, R.S.: Structural properties of a carbon-nanotube crystal. Phys. Rev. Lett. 73, 676–679 (1994)

    Article  Google Scholar 

  19. Wang, N., Tang, Z.K., Li, G.D., Chen, J.S.: Singlewalled 4 Å carbon nanotube arrays. Nature 408, 50–51 (2000)

    Article  Google Scholar 

  20. Haddon, R.C.: Chemistry of the fullerenes: the manifestation of strain in a class of continuous aromatic molecules. Science 261, 1545–1550 (1993)

    Article  Google Scholar 

  21. Hamdi, M., Sharma, G., Ferreira, A., Mavroidis, D.: Characterization of protein based spring-like elastic joints for biorobotic applications. In: IEEE International Conference on Robotics and Automation, pp. 1794–1799, Orlando, FL, May 15–19, 2006

    Google Scholar 

  22. Hamdi, M., Sharma, G., Ferreira, A., Mavroidis, D.: Prototyping bio-nanorobots using molecular dynamics simulation and virtual reality. Microelectron. J. 39, 190–201 (2008)

    Article  Google Scholar 

  23. Mahadevan, L., Matsudaira, P.: Mobility powered by supramolecular springs and ratchets. Science 288, 95–99 (2000)

    Article  Google Scholar 

  24. Sakai, L.Y., Keene, D.R., Engvall, E.: Fibrillin, a new 350-kD glycoprotein, is a component of extracellular microfibrils. J. Cell Biol. 103, 2499–2509 (1986)

    Article  Google Scholar 

  25. Treasy, M.M.J., Ebbesen, T.W., Gibson, J.M.: Nature (Lond.) 381, 678 (1996)

    Article  Google Scholar 

  26. Wong, E.W., Sheehan, P.E., Lieber, C.M.: Science (Wash.) 277, 1971 (1997)

    Article  Google Scholar 

  27. Zheng, Q., Liu, J.Z., Jiang, Q.: Phys. Rev. B Condens. Matter 65, 245409 (2002)

    Google Scholar 

  28. Tu, Z.C., Hu, X.: Phys. Rev. B Condens. Matter 72, 033404 (2005)

    Google Scholar 

  29. Maslov, L.: Nanotechnology 17, 2475 (2006)

    Article  Google Scholar 

  30. Saito, R., Matsuo, R., Kimura, T., Dresselhaus, G., Dresselhaus, M.S.: Chem. Phys. Lett. 348, 187 (2001)

    Article  Google Scholar 

  31. Lozovik, Y.E., Minogin, A.V., Popov, A.M.: Phys. Lett. A 313, 112 (2003)

    Article  Google Scholar 

  32. Lozovik, Y.E., Minogin, A.V., Popov, A.M.: Pisma Z. Éksp. Teor. Fiz. 77(11), 759 (2003). [JETP Lett. 77(11), 631 (2003)]

    Google Scholar 

  33. Lozovik, Y.E., Popov, A.M.: Fullerenes, nanotubes. Carbon Nanostruct. 12, 485 (2004)

    Google Scholar 

  34. Fennimore, A.M., Yuzvinsky, T.D., Han, W.Q., Fuhrer, M.S., Cumings, J., Zettl, A.: Nature (Lond.) 424, 408 (2003)

    Article  Google Scholar 

  35. Bourlon, B., Glatti, D.C., Forro, L., Bachfold, A.: Nano Lett. 4, 709 (2004)

    Article  Google Scholar 

  36. Petsko, G.A., Ringe, D.: Protein Structure and Function: From Sequence to Consequence. New Science Press, London (2004)

    Google Scholar 

  37. Noji, H., et al.: Direct observation of the rotation of F1-ATPase. Nature 386(6622), 299–302 (1997)

    Article  Google Scholar 

  38. Lubert, S.: Biochemistry, 4th edn. Freeman, New York (1995)

    Google Scholar 

  39. Noji, H.: The rotary enzyme of the cell: the rotation of F1-ATPase. Science 282, 1844–1845 (1998)

    Article  Google Scholar 

  40. Vale, R.D., Milligan, R.A.: The way things move: looking under the hood of molecular motor proteins. Science 288, 88–95 (2000)

    Article  Google Scholar 

  41. Pallen, M.J., Matzke, N.J.: From the origin of species to the origin of bacterial flagella. Nat. Rev. Microbiol. 4, 784–790 (2006)

    Article  Google Scholar 

  42. Mavroidis, C., Dubey, A., Yarmush, M.: Molecular machines. Annu. Rev. Biomed. Eng. 6, 363–395 (2004)

    Article  Google Scholar 

  43. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The protein data bank. Nucleic Acids Res. 28, 235–242 (2000)

    Article  Google Scholar 

  44. Sühnel, J.: Virtual reality modeling for structural biology. Institut fur Molekulare Biotechnologie, Postfach 100813, D-07708 Jena/Germany

    Google Scholar 

  45. Sankaranarayanan, G., Weghorst, S., Sanner, M., Gillet, A., Olson, A.: Role of haptics in teaching structural molecular biology. In: 1th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, p. 365, Los Angeles, California, March 22–23, 2003

    Google Scholar 

  46. Schlitter, J.: Targeted molecular dynamics: a new approach for searching pathways of conformational transitions. J. Mol. Graph. 12, 84–89 (1994)

    Article  Google Scholar 

  47. Izrailev, S., Stepaniants, S., Isralewitz, B., Kosztin, D., Lu, H., Molnar, F., Wriggers, W., Schulten, K.: Targeted molecular dynamics: a new approach for searching pathways of conformational transitions. J. Mol. Graph. 12, 84–89 (1994)

    Article  Google Scholar 

  48. Izrailev, S., Stepaniants, S., Isralewitz, B., Kosztin, D., Lu, H., Molnar, F., Wriggers, W., Schulten, K.: Steered molecular dynamics. In: Computational Molecular Dynamics: Challenges, Methods, Ideas, pp. 39–65. Springer, Berlin (1998)

    Google Scholar 

  49. Casher, O., Leach, C., Page, C.S., Rzepa, H.S.: Advanced VRML based chemistry applications: a 3D molecular hyperglossary. J. Mol. Struct. 368, 49 (1996)

    Article  Google Scholar 

  50. Casher, O., Leach, C., Page, C.S., Rzepa, H.S.: Virtual reality modelling language (VRML) in chemistry. Chem. Br. 34, 26 (1998)

    Google Scholar 

  51. Casher, O., Rzepa, H.S.: A chemical collaboratory using explorer eyechem and the common client interface. Comput. Graph. 29, 52 (1995)

    Article  Google Scholar 

  52. Wriggers, W., Birmanns, S.: Using situs for flexible and rigid-body fitting of multi-resolution single molecule data. J. Struct. Biol. 133, 193–202 (2001)

    Article  Google Scholar 

  53. ImmersaDesk. http://www.fakespace.com/workdesk1.shtml, 2003 Fakespace Systems Inc.

  54. Haase, H., Strassner, J., Dai, F.: VR techniques for the investigation of molecule data. Comput. Graph. 20(2), 207–217 (1996). Special Issue on Virtual Reality

    Article  Google Scholar 

  55. Drees, R.C., Pleiss, J., Roller, D., Schmid, R.D.: Highly immersive molecular modeling (HIMM): an architecture for the integration of molecular modeling and virtual reality. In: German Conference on Bioinformatics, pp. 190–192, Sep.–Oct. 1996

    Google Scholar 

  56. Collaborative Visualization and Simulation Environment (COVISE): http://www.hlrs.de/organization/vis/covise/. Last updated Mar. 30, 2001

  57. Levit, C., Bryson, S.T., Henze, C.E.: Virtual mechanosynthesis. In: Fifth Foresight Conference on Molecular Nanotechnology, California, Nov. 1997

    Google Scholar 

  58. Stone, J.E., Gullingsrud, J., Schulten, K., Grayson, P.: A system for interactive molecular dynamics simulation. In: 2001 ACM Symposium on Interactive 3D Graphics, pp. 191–194, New York, USA (2001)

    Google Scholar 

  59. Humphrey, W.F., Dalke, A., Schulten, K.: VMD—visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996)

    Article  Google Scholar 

  60. Roth, M., Frohlich, T.: IDEAL Interaction DEvice Interaction Layer User’s Manual. Fraunhofer-IGD, internal report (1997)

    Google Scholar 

  61. IDEAL Interaction DEvice Interaction Layer User’s Manual. Fraunhofer-IGD, internal report (1997)

    Google Scholar 

  62. Leech, J., Prins, J.F., Hermans, J.: SMD: visual steering of molecular dynamics for protein design. IEEE Comput. Sci. Eng. 4, 38–45 (1996)

    Article  Google Scholar 

  63. Taylor, R.M. II, Hudson, T.C., Seeger, A., Weber, H., Juliano, J., Helser, A.T.: VRPN: a device-independent, network-transparent VR peripheral system. In: ACM VRST (2001)

    Google Scholar 

  64. Levine, D., Facello, M., Hallstrom, P., Reeder, G., Walenz, B., Stevens, F.: STALK: an interactive virtual molecular docking system. IEEE Comput. Sci. Eng. (1996)

    Google Scholar 

  65. Cruz-Neira, C., Langley, R., Bash, P.A.: VIBE: a virtual biomolecular environment for interactive molecular modeling. Comput. Chem. 20(4), 469 (1996)

    Article  Google Scholar 

  66. Arthur, K., Preston, T., Taylor, R.M. II, Brooks, F.P., Jr., Whitton, M.C., Wright, W.V.: Designing and building the PIT: a head-tracked stereo workspace for two users. In: 2nd International Immersive Projection Technology Workshop, Ames, Iowa, 11–12 May 1998

    Google Scholar 

  67. Prins, J.F., Hermans, J., Mann, G., Nyland, L.S., Simons, M.: A virtual environment for steered molecular dynamics. Future Gener. Comput. Syst. 15(4), 485–495 (1999)

    Article  Google Scholar 

  68. Saenger, W.: Principles of Nucleic Acid Structure. Springer, New York (1984)

    Book  Google Scholar 

  69. Watson, J.D., et al.: Molecular Biology of the Gene, 4th edn. Benjamin/Cummings, Redwood City (1987)

    Google Scholar 

  70. Nishinaka, T., Ito, Y., Yokoyama, S., Shibata, T.: Proc. Natl. Acad. Sci. USA 94, 6623 (1997)

    Article  Google Scholar 

  71. Nishinaka, T., Shinohara, A., Ito, Y., Yokoyama, S., Shibata, T.: Proc. Natl. Acad. Sci. USA 95, 11071 (1998)

    Article  Google Scholar 

  72. Lt’eger, J.F., Robert, J., Bourdieu, L., Chatenay, D., Marko, J.F.: Proc. Natl. Acad. Sci. USA 95, 12295 (1998)

    Article  Google Scholar 

  73. Stewart, L., Redinbo, M.R., Qiu, X., Hol, W.G.J., Champoux, J.J.: Science 279, 1534 (1998)

    Article  Google Scholar 

  74. Rybenkov, V.V., Ullsperger, C., Vologodskii, A.V., Cozzarelli, N.R.: Science 277, 690 (1997)

    Article  Google Scholar 

  75. Yan, J., Magnasco, M.O., Marko, J.F.: Nature (Lond.) 401, 932 (1999)

    Article  Google Scholar 

  76. Smith, S.B., Finzi, L., Bustamante, C.: Science 258, 1122 (1992)

    Article  Google Scholar 

  77. Bensimon, D., Simon, A.J., Croquette, V., Bensimon, A.: Phys. Rev. Lett. 74, 4754 (1995)

    Article  Google Scholar 

  78. Cluzel, P., Lebrun, A., Heller, C., Lavery, R., Viovy, J.-L., Chatenay, D., Caron, F.: Science 271, 792 (1996)

    Article  Google Scholar 

  79. Smith, S.B., Cui, Y., Bustamante, C.: Science 271, 795 (1996)

    Article  Google Scholar 

  80. Strick, T.R., Alleman, J.-F., Bensimon, D., Bensimon, A., Croquette, V.: Science 271, 1835 (1996)

    Article  Google Scholar 

  81. Strick, T.R., Croquette, V., Bensimon, D.: Proc. Natl. Acad. Sci. USA 95, 10579 (1998)

    Article  Google Scholar 

  82. Allemand, J.F., Bensimon, D., Lavery, R., Croquette, V.: Proc. Natl. Acad. Sci. USA 95, 14152 (1998)

    Article  Google Scholar 

  83. Lt’eger, J.F., Romano, G., Sarkar, A., Robert, J., Bourdieu, L., Chatenay, D., Marko, J.F.: Phys. Rev. Lett. 83, 1066 (1999)

    Article  Google Scholar 

  84. Bustamante, C., Marko, J.F., Siggia, E.D., Smith, S.: Science 265, 1599 (1994)

    Article  Google Scholar 

  85. Marko, J.F., Siggia, E.D.: Macromolecules 28, 8759 (1995)

    Article  Google Scholar 

  86. Yu, M.F., Lourie, O., Dyer, M.J., Moloni, K., Ruoff, R.S.: Science 287, 637 (2000)

    Article  Google Scholar 

  87. Yu, M.F., Yakobson, B.I., Ruoff, R.S.: J. Phys. Chem. B 104, 8764 (2000)

    Article  Google Scholar 

  88. Cumings, J., Zettl, A.: Science 289, 602 (2000)

    Article  Google Scholar 

  89. Tuzun, R.E., Noid, D.W., Sumpter, B.G.: Nanotechnology 6, 52 (1995)

    Article  Google Scholar 

  90. Srivastava, D.W.: Nanotechnology 8, 186 (1997)

    Article  Google Scholar 

  91. Forro, L.: Science 289(5479), 560 (2000)

    Article  Google Scholar 

  92. Zheng, Q., Jiang, Q.: Phys. Rev. Lett. 88, 045503 (2002)

    Article  Google Scholar 

  93. Kresse, H.P., et al.: Four-helix bundle topology re-engineered: monomeric Rop protein variants with different loop arrangements. Protein Eng. 14(11), 897–901 (2001)

    Article  Google Scholar 

  94. Balzani, V., et al.: Molecular Devices and Machines. Wiley–VCH, New York–Weinheim (2003)

    Google Scholar 

  95. Finer, J.T., et al.: Nature 368, 113 (1994)

    Article  Google Scholar 

  96. Svoboda, K., et al.: Nature 365, 721 (1993)

    Article  Google Scholar 

  97. Howard, J.: Mechanics of Motor Proteins and the Cytoskeleton. Sinauer, Sunderland (2001)

    Google Scholar 

  98. Wuite, G.J.L., et al.: Nature 404, 103 (2000)

    Article  Google Scholar 

  99. Beissenhirtz, M.K., Willner, I.: Org. Biomol. Chem. 4, 3392 (2006)

    Article  Google Scholar 

  100. Mandal, M., Breaker, R.R.: Nat. Rev. Mol. Cell Biol. 5, 451 (2004)

    Article  Google Scholar 

  101. Buranachai, C., et al.: Nano Lett. 6, 496 (2006)

    Article  Google Scholar 

  102. Müller, B.K., et al.: Nano Lett. 6, 2814 (2006)

    Article  Google Scholar 

  103. Liu, D.S., et al.: J. Am. Chem. Soc. 128, 2067 (2006)

    Article  Google Scholar 

  104. Liedl, T., et al.: Angew. Chem. Int. Ed. 45, 5007 (2006)

    Article  Google Scholar 

  105. Hazarika, P., et al.: Angew. Chem. Int. Ed. 43, 6469 (2004)

    Article  Google Scholar 

  106. Yan, H., et al.: Nature 415, 62 (2002)

    Article  Google Scholar 

  107. Feng, L.P., et al.: Angew. Chem. Int. Ed. 42, 4342 (2003)

    Article  Google Scholar 

  108. Shu, W.M., et al.: J. Am. Chem. Soc. 127, 17054 (2005)

    Article  Google Scholar 

  109. Yang, X.P., et al.: Biopolymers 45, 69 (1998)

    Article  Google Scholar 

  110. Yurke, B., et al.: Nature 406, 605 (2000)

    Article  Google Scholar 

  111. Simmel, F.C., Yurke, B.: Phys. Rev. E 63, 041913 (2001)

    Article  Google Scholar 

  112. Mitchell, J.C., Yurke, B.: DNA Computing, 7th International Workshop on DNA-Based Computers. LNCS, vol. 2340, p. 258. Springer, Heidelberg (2002)

    Google Scholar 

  113. Shen, W.Q., et al.: Angew. Chem. Int. Ed. 43, 4750 (2004)

    Article  Google Scholar 

  114. Chen, Y., et al.: Angew. Chem. Int. Ed. 43, 3554 (2004)

    Article  Google Scholar 

  115. Chhabra, R., et al.: Nano Lett. 6, 978 (2006)

    Article  Google Scholar 

  116. Seeman, N.C.: Trends Biochem. Sci. 30, 119 (2005)

    Article  Google Scholar 

  117. Shin, J.S., Pierce, N.A.: J. Am. Chem. Soc. 126, 10834 (2004)

    Article  Google Scholar 

  118. Sherman, W.B., Seeman, N.C.: Nano Lett. 4, 1203 (2004)

    Article  Google Scholar 

  119. Tian, Y., Mao, C.: J. Am. Chem. Soc. 126, 11410 (2004)

    Article  Google Scholar 

  120. Yin, P., et al.: Angew. Chem. Int. Ed. 43, 4906 (2004)

    Article  Google Scholar 

  121. Tian, Y., et al.: Angew. Chem. Int. Ed. 44, 4355 (2005)

    Article  Google Scholar 

  122. Pei, R., et al.: J. Am. Chem. Soc. 128, 12693 (2006)

    Article  Google Scholar 

  123. Li, J.W.J., Tan, W.H.: Nano Lett. 2, 315 (2002)

    Article  Google Scholar 

  124. Makita, N., et al.: Nucleic Acids Symp. Ser. 48, 173 (2004)

    Article  Google Scholar 

  125. Fahlman, R.P., et al.: Nano Lett. 3, 1073 (2003)

    Article  Google Scholar 

  126. Anelli, P.-L., Spencer, N., Stoddart, J.F.: A molecular shuttle. J. Am. Chem. Soc. 113, 5131–5133 (1991)

    Article  Google Scholar 

  127. Balzani, V.V., Credi, A., Raymo, F.M., Stoddart, J.F.: Artificial molecular machines. Angew. Chem. Int. Ed. Engl. 39, 3348–3391 (2000)

    Article  Google Scholar 

  128. Schalley, C.A., Beizai, K., Vogtle, F.: On the way to rotaxane-based molecular motors: studies in molecular mobility and topological chirality. Acc. Chem. Res. 34, 465–476 (2001)

    Article  Google Scholar 

  129. Gatti, F.G., Leon, S., Wong, J.K.Y., Bottari, G., Altieri, A., et al.: Photoisomerization of a rotaxane hydrogen bonding template: light-induced acceleration of a large amplitude rotational motion. Proc. Natl. Acad. Sci. USA 100, 10–14 (2003)

    Article  Google Scholar 

  130. Bermudez, V.V., Capron, N., Gase, T., Gatti, F.G., Kajzar, F., et al.: Influencing intramolecular motion with an alternating electric field. Nature 406, 608–611 (2000)

    Article  Google Scholar 

  131. Fyfe, M.C.T., Stoddart, J.F.: Synthetic supramolecular chemistry. Acc. Chem. Res. 30, 393–401 (1997)

    Article  Google Scholar 

  132. Ashton, P.R., Goodnow, T.T., Kaifer, A.W., Reddington, M.V., Slawin, A.M.Z., Spencer, N., Stoddart, J.F., Vicent, C., Williams, D.J.: A [2]catenane made to order. Angew. Chem. Int. Ed. Eng. 28, 1396–1399 (1989)

    Article  Google Scholar 

  133. Deleuze, M.S.: Can benzylic amide [2]catenane rings rotate on graphite? J. Am. Chem. Soc. 122, 1130–1143 (2000)

    Article  Google Scholar 

  134. Maiti, A.: Multiscale modeling with carbon nanotubes. Microelectron. J. (2006)

    Google Scholar 

  135. Liu, Y.J., Chen, X.L.: Continuum models of carbon nanotube-based composites using the boundary element method. J. Bound. Elem. 1(2), 316–335 (2003)

    MathSciNet  Google Scholar 

  136. Karakasidis, T.E., Charitidis, C.A.: Multiscale modeling in nanomaterials science. Mater. Sci. Eng. (2006)

    Google Scholar 

  137. Frenkel, D., Smit, B.: Understanding Molecular Simulation: From Algorithms to Applications, 2nd edn. Academic Press, San Diego (2001)

    Google Scholar 

  138. Ghoniem, N.M., Busso, E.P., Kioussis, N., Huang, H.: Multiscale modelling of nanomechanics and micromechanics: an overview. Philos. Mag. 83(31–34), 3475–3528 (2003)

    Article  Google Scholar 

  139. Braatz, R.D., et al.: Perspectives on the design and control of multiscale systems. J. Process Control 16, 193–204 (2006)

    Article  Google Scholar 

  140. Feller, E., Zhang, Y.H., Pastor, R.W., Brooks, B.R.: Constant pressure molecular dynamics simulationthe Langevin piston method. Chem. Phys. J. 103, 4613–4621 (1995)

    Article  Google Scholar 

  141. Hetherington, J., et al.: Addressing the challenges of multiscale model management in systems biology. Comput. Chem. Eng. (2006)

    Google Scholar 

  142. Ahmed, A., Gohlke, H.: Multiscale modeling of macromolecular conformational changes combining concepts from rigidity and elastic network theory. Proteins Struct. Funct. Bioinf. 63, 1038–1051 (2006)

    Article  Google Scholar 

  143. Feig, M., Karanicolas, J., Brooks, C.L.: MMTSB Tool Set: enhanced sampling and multiscale modeling methods for applications in structural biology. J. Mol. Graph. Model. 22, 377–395 (2004)

    Article  Google Scholar 

  144. Villa, E., Balaeff, A., Schulten, K.: Structural dynamics of the lac repressor-DNA complex revealed by a multiscale simulation. Proc. Natl. Acad. Sci. USA 102(19), 6783–6788 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustapha Hamdi .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hamdi, M., Ferreira, A. (2011). Current State-of-the-Art on Nanorobotic Components and Design. In: Design, Modeling and Characterization of Bio-Nanorobotic Systems. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3180-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-3180-8_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-3179-2

  • Online ISBN: 978-90-481-3180-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics