Advertisement

Current State-of-the-Art on Nanorobotic Components and Design

  • Mustapha Hamdi
  • Antoine Ferreira

Abstract

This chapter focuses on the state of the art in the field of nano-robotics by describing various molecular level systems and associated design and characterization issues. Nano-robots are controllable machines at the nanometer (10−9) or molecular scale that are composed of nano-scale components. With the modern scientific capabilities, it has become possible to attempt the creation of nanorobotic devices and interface them with the macro world for control. There are countless such machines that exist in nature and there is an opportunity to build more of them by mimicking nature. Even if the field of nanorobotics is fundamentally different than that of macro robots due to the differences in scale and material, there are many similarities in design and control techniques that eventually could be projected and applied. A roadmap towards the progression of this field is proposed and some design concept and philosophies are illustrated. There are many applications for nanorobotic systems and its biggest impact would be in the area of medicine.

Keywords

Virtual Reality Alpha Helix Molecular Machine Virtual Reality Modeling Language Make Hydrogen Bond 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Calvacanti, A., Shririnzadeh, B., Freitas, R., Hogg, T.: Nanorobot architecture for medical target identification. Nanotechnology 19, 1–15 (2008) Google Scholar
  2. 2.
    Requicha, A.: Instrumented cellular systems. Nanomed. Nanotechnol. Biol. Med. 2(4), 278 (2006) CrossRefGoogle Scholar
  3. 3.
    Hogg, T., Kuekes, P.J.: Mobile microscopic sensors for high resolution in vivo diagnostics. Nanomed. Nanotechnol. Biol. Med. 2(4), 239–247 (2006) CrossRefGoogle Scholar
  4. 4.
    Dong, L.X., Nelson, B.J., Fukuda, T., Arai, F.: Towards linear nano servomotors. IEEE Trans. Autom. Sci. Eng. 3(3), 228–235 (2006) CrossRefGoogle Scholar
  5. 5.
    Subramanian, A., Dong, L.X., Nelson, B.J.: Batch fabrication of carbon nanotube bearings. Nanotechnology 18, 075703 (2007) CrossRefGoogle Scholar
  6. 6.
    Chirikjian, G.S., Kazerounian, K., Mavroidis, C.: Analysis and design of protein based nanodevices: challenges and opportunities in mechanical design. J. Mech. Des. 127, 695–698 (2005) Google Scholar
  7. 7.
    Yesin, K.B., Vollmers, K., Nelson, B.J.: Modeling and control of unthered biomicrorobots in a fluidic environment using electromagnetic fields. Int. J. Rob. Res. 25(5–6), 527–536 (2006) CrossRefGoogle Scholar
  8. 8.
    Mathieu, J.-B., Beaudoin, G., Martel, S.: Method of propulsion of a ferromagnetic core in the cardiovascular system through magnetic gradients generated by an MRI system. IEEE Trans. Biomed. Eng. 53(2), 292–299 (2006) CrossRefGoogle Scholar
  9. 9.
    Behkam, B., Sitti, M.: Design methodology for biomimetic propulsion of miniature swimming robots. J. Dyn. Syst. Meas. Control 128, 36–43 (2006) CrossRefGoogle Scholar
  10. 10.
    Martel, S., Tremblay, C., Ngakeng, S., Langlois, G.: Controlled manipulation and actuation of microobjects with magnetotactic bacteria. Appl. Phys. Lett. 89, 233804 (2006) CrossRefGoogle Scholar
  11. 11.
    Hamdi, M., Ferreira, A.: DNA nanorobotics. Microelectron. J. (2008) Google Scholar
  12. 12.
    Steager, E., Kim, C.B., Patel, J., Bith, S., Naik, C., Reber, L., Kim, M.J.: Control of microfabricated structures powered by flagellated bacteria using phototaxis. Appl. Phys. Lett. 90, 263901 (2006) CrossRefGoogle Scholar
  13. 13.
    Shingyoji, C., Higuchi, H., Yoshimura, M., Katayama, E., Yanagida, T.: Dynein arms are oscillating force generators. Nature 393, 711–714 (2001) CrossRefGoogle Scholar
  14. 14.
    Mitsuya, Y.: Significance of micro-nanomechatronics for an information-based society. In: The Fourth Symposium, Micro-Nanomechatronics for Information-Based Society, pp. 29–31, 31 Oct.–3 Nov. 2004 Google Scholar
  15. 15.
    Iijima, S.: Nature (Lond.) 354(6348), 56–58 (1991) CrossRefGoogle Scholar
  16. 16.
    Hamada, N., Sawada, S.I., Oshiyama, A.: New onedimensional conductors, graphite microtubules. Phys. Rev. Lett. 68, 1579–1581 (1992) CrossRefGoogle Scholar
  17. 17.
    Dresselhaus, M.S., Dresselhaus, G., Eklund, P.C.: Science of Fullerenes and Carbon Nanotubes. Academic Press, San Diego (1995) Google Scholar
  18. 18.
    Tersoff, J., Ruoff, R.S.: Structural properties of a carbon-nanotube crystal. Phys. Rev. Lett. 73, 676–679 (1994) CrossRefGoogle Scholar
  19. 19.
    Wang, N., Tang, Z.K., Li, G.D., Chen, J.S.: Singlewalled 4 Å carbon nanotube arrays. Nature 408, 50–51 (2000) CrossRefGoogle Scholar
  20. 20.
    Haddon, R.C.: Chemistry of the fullerenes: the manifestation of strain in a class of continuous aromatic molecules. Science 261, 1545–1550 (1993) CrossRefGoogle Scholar
  21. 21.
    Hamdi, M., Sharma, G., Ferreira, A., Mavroidis, D.: Characterization of protein based spring-like elastic joints for biorobotic applications. In: IEEE International Conference on Robotics and Automation, pp. 1794–1799, Orlando, FL, May 15–19, 2006 Google Scholar
  22. 22.
    Hamdi, M., Sharma, G., Ferreira, A., Mavroidis, D.: Prototyping bio-nanorobots using molecular dynamics simulation and virtual reality. Microelectron. J. 39, 190–201 (2008) CrossRefGoogle Scholar
  23. 23.
    Mahadevan, L., Matsudaira, P.: Mobility powered by supramolecular springs and ratchets. Science 288, 95–99 (2000) CrossRefGoogle Scholar
  24. 24.
    Sakai, L.Y., Keene, D.R., Engvall, E.: Fibrillin, a new 350-kD glycoprotein, is a component of extracellular microfibrils. J. Cell Biol. 103, 2499–2509 (1986) CrossRefGoogle Scholar
  25. 25.
    Treasy, M.M.J., Ebbesen, T.W., Gibson, J.M.: Nature (Lond.) 381, 678 (1996) CrossRefGoogle Scholar
  26. 26.
    Wong, E.W., Sheehan, P.E., Lieber, C.M.: Science (Wash.) 277, 1971 (1997) CrossRefGoogle Scholar
  27. 27.
    Zheng, Q., Liu, J.Z., Jiang, Q.: Phys. Rev. B Condens. Matter 65, 245409 (2002) Google Scholar
  28. 28.
    Tu, Z.C., Hu, X.: Phys. Rev. B Condens. Matter 72, 033404 (2005) Google Scholar
  29. 29.
    Maslov, L.: Nanotechnology 17, 2475 (2006) CrossRefGoogle Scholar
  30. 30.
    Saito, R., Matsuo, R., Kimura, T., Dresselhaus, G., Dresselhaus, M.S.: Chem. Phys. Lett. 348, 187 (2001) CrossRefGoogle Scholar
  31. 31.
    Lozovik, Y.E., Minogin, A.V., Popov, A.M.: Phys. Lett. A 313, 112 (2003) CrossRefGoogle Scholar
  32. 32.
    Lozovik, Y.E., Minogin, A.V., Popov, A.M.: Pisma Z. Éksp. Teor. Fiz. 77(11), 759 (2003). [JETP Lett. 77(11), 631 (2003)] Google Scholar
  33. 33.
    Lozovik, Y.E., Popov, A.M.: Fullerenes, nanotubes. Carbon Nanostruct. 12, 485 (2004) Google Scholar
  34. 34.
    Fennimore, A.M., Yuzvinsky, T.D., Han, W.Q., Fuhrer, M.S., Cumings, J., Zettl, A.: Nature (Lond.) 424, 408 (2003) CrossRefGoogle Scholar
  35. 35.
    Bourlon, B., Glatti, D.C., Forro, L., Bachfold, A.: Nano Lett. 4, 709 (2004) CrossRefGoogle Scholar
  36. 36.
    Petsko, G.A., Ringe, D.: Protein Structure and Function: From Sequence to Consequence. New Science Press, London (2004) Google Scholar
  37. 37.
    Noji, H., et al.: Direct observation of the rotation of F1-ATPase. Nature 386(6622), 299–302 (1997) CrossRefGoogle Scholar
  38. 38.
    Lubert, S.: Biochemistry, 4th edn. Freeman, New York (1995) Google Scholar
  39. 39.
    Noji, H.: The rotary enzyme of the cell: the rotation of F1-ATPase. Science 282, 1844–1845 (1998) CrossRefGoogle Scholar
  40. 40.
    Vale, R.D., Milligan, R.A.: The way things move: looking under the hood of molecular motor proteins. Science 288, 88–95 (2000) CrossRefGoogle Scholar
  41. 41.
    Pallen, M.J., Matzke, N.J.: From the origin of species to the origin of bacterial flagella. Nat. Rev. Microbiol. 4, 784–790 (2006) CrossRefGoogle Scholar
  42. 42.
    Mavroidis, C., Dubey, A., Yarmush, M.: Molecular machines. Annu. Rev. Biomed. Eng. 6, 363–395 (2004) CrossRefGoogle Scholar
  43. 43.
    Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The protein data bank. Nucleic Acids Res. 28, 235–242 (2000) CrossRefGoogle Scholar
  44. 44.
    Sühnel, J.: Virtual reality modeling for structural biology. Institut fur Molekulare Biotechnologie, Postfach 100813, D-07708 Jena/Germany Google Scholar
  45. 45.
    Sankaranarayanan, G., Weghorst, S., Sanner, M., Gillet, A., Olson, A.: Role of haptics in teaching structural molecular biology. In: 1th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, p. 365, Los Angeles, California, March 22–23, 2003 Google Scholar
  46. 46.
    Schlitter, J.: Targeted molecular dynamics: a new approach for searching pathways of conformational transitions. J. Mol. Graph. 12, 84–89 (1994) CrossRefGoogle Scholar
  47. 47.
    Izrailev, S., Stepaniants, S., Isralewitz, B., Kosztin, D., Lu, H., Molnar, F., Wriggers, W., Schulten, K.: Targeted molecular dynamics: a new approach for searching pathways of conformational transitions. J. Mol. Graph. 12, 84–89 (1994) CrossRefGoogle Scholar
  48. 48.
    Izrailev, S., Stepaniants, S., Isralewitz, B., Kosztin, D., Lu, H., Molnar, F., Wriggers, W., Schulten, K.: Steered molecular dynamics. In: Computational Molecular Dynamics: Challenges, Methods, Ideas, pp. 39–65. Springer, Berlin (1998) Google Scholar
  49. 49.
    Casher, O., Leach, C., Page, C.S., Rzepa, H.S.: Advanced VRML based chemistry applications: a 3D molecular hyperglossary. J. Mol. Struct. 368, 49 (1996) CrossRefGoogle Scholar
  50. 50.
    Casher, O., Leach, C., Page, C.S., Rzepa, H.S.: Virtual reality modelling language (VRML) in chemistry. Chem. Br. 34, 26 (1998) Google Scholar
  51. 51.
    Casher, O., Rzepa, H.S.: A chemical collaboratory using explorer eyechem and the common client interface. Comput. Graph. 29, 52 (1995) CrossRefGoogle Scholar
  52. 52.
    Wriggers, W., Birmanns, S.: Using situs for flexible and rigid-body fitting of multi-resolution single molecule data. J. Struct. Biol. 133, 193–202 (2001) CrossRefGoogle Scholar
  53. 53.
    ImmersaDesk. http://www.fakespace.com/workdesk1.shtml, 2003 Fakespace Systems Inc.
  54. 54.
    Haase, H., Strassner, J., Dai, F.: VR techniques for the investigation of molecule data. Comput. Graph. 20(2), 207–217 (1996). Special Issue on Virtual Reality CrossRefGoogle Scholar
  55. 55.
    Drees, R.C., Pleiss, J., Roller, D., Schmid, R.D.: Highly immersive molecular modeling (HIMM): an architecture for the integration of molecular modeling and virtual reality. In: German Conference on Bioinformatics, pp. 190–192, Sep.–Oct. 1996 Google Scholar
  56. 56.
    Collaborative Visualization and Simulation Environment (COVISE): http://www.hlrs.de/organization/vis/covise/. Last updated Mar. 30, 2001
  57. 57.
    Levit, C., Bryson, S.T., Henze, C.E.: Virtual mechanosynthesis. In: Fifth Foresight Conference on Molecular Nanotechnology, California, Nov. 1997 Google Scholar
  58. 58.
    Stone, J.E., Gullingsrud, J., Schulten, K., Grayson, P.: A system for interactive molecular dynamics simulation. In: 2001 ACM Symposium on Interactive 3D Graphics, pp. 191–194, New York, USA (2001) Google Scholar
  59. 59.
    Humphrey, W.F., Dalke, A., Schulten, K.: VMD—visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996) CrossRefGoogle Scholar
  60. 60.
    Roth, M., Frohlich, T.: IDEAL Interaction DEvice Interaction Layer User’s Manual. Fraunhofer-IGD, internal report (1997) Google Scholar
  61. 61.
    IDEAL Interaction DEvice Interaction Layer User’s Manual. Fraunhofer-IGD, internal report (1997) Google Scholar
  62. 62.
    Leech, J., Prins, J.F., Hermans, J.: SMD: visual steering of molecular dynamics for protein design. IEEE Comput. Sci. Eng. 4, 38–45 (1996) CrossRefGoogle Scholar
  63. 63.
    Taylor, R.M. II, Hudson, T.C., Seeger, A., Weber, H., Juliano, J., Helser, A.T.: VRPN: a device-independent, network-transparent VR peripheral system. In: ACM VRST (2001) Google Scholar
  64. 64.
    Levine, D., Facello, M., Hallstrom, P., Reeder, G., Walenz, B., Stevens, F.: STALK: an interactive virtual molecular docking system. IEEE Comput. Sci. Eng. (1996) Google Scholar
  65. 65.
    Cruz-Neira, C., Langley, R., Bash, P.A.: VIBE: a virtual biomolecular environment for interactive molecular modeling. Comput. Chem. 20(4), 469 (1996) CrossRefGoogle Scholar
  66. 66.
    Arthur, K., Preston, T., Taylor, R.M. II, Brooks, F.P., Jr., Whitton, M.C., Wright, W.V.: Designing and building the PIT: a head-tracked stereo workspace for two users. In: 2nd International Immersive Projection Technology Workshop, Ames, Iowa, 11–12 May 1998 Google Scholar
  67. 67.
    Prins, J.F., Hermans, J., Mann, G., Nyland, L.S., Simons, M.: A virtual environment for steered molecular dynamics. Future Gener. Comput. Syst. 15(4), 485–495 (1999) CrossRefGoogle Scholar
  68. 68.
    Saenger, W.: Principles of Nucleic Acid Structure. Springer, New York (1984) CrossRefGoogle Scholar
  69. 69.
    Watson, J.D., et al.: Molecular Biology of the Gene, 4th edn. Benjamin/Cummings, Redwood City (1987) Google Scholar
  70. 70.
    Nishinaka, T., Ito, Y., Yokoyama, S., Shibata, T.: Proc. Natl. Acad. Sci. USA 94, 6623 (1997) CrossRefGoogle Scholar
  71. 71.
    Nishinaka, T., Shinohara, A., Ito, Y., Yokoyama, S., Shibata, T.: Proc. Natl. Acad. Sci. USA 95, 11071 (1998) CrossRefGoogle Scholar
  72. 72.
    Lt’eger, J.F., Robert, J., Bourdieu, L., Chatenay, D., Marko, J.F.: Proc. Natl. Acad. Sci. USA 95, 12295 (1998) CrossRefGoogle Scholar
  73. 73.
    Stewart, L., Redinbo, M.R., Qiu, X., Hol, W.G.J., Champoux, J.J.: Science 279, 1534 (1998) CrossRefGoogle Scholar
  74. 74.
    Rybenkov, V.V., Ullsperger, C., Vologodskii, A.V., Cozzarelli, N.R.: Science 277, 690 (1997) CrossRefGoogle Scholar
  75. 75.
    Yan, J., Magnasco, M.O., Marko, J.F.: Nature (Lond.) 401, 932 (1999) CrossRefGoogle Scholar
  76. 76.
    Smith, S.B., Finzi, L., Bustamante, C.: Science 258, 1122 (1992) CrossRefGoogle Scholar
  77. 77.
    Bensimon, D., Simon, A.J., Croquette, V., Bensimon, A.: Phys. Rev. Lett. 74, 4754 (1995) CrossRefGoogle Scholar
  78. 78.
    Cluzel, P., Lebrun, A., Heller, C., Lavery, R., Viovy, J.-L., Chatenay, D., Caron, F.: Science 271, 792 (1996) CrossRefGoogle Scholar
  79. 79.
    Smith, S.B., Cui, Y., Bustamante, C.: Science 271, 795 (1996) CrossRefGoogle Scholar
  80. 80.
    Strick, T.R., Alleman, J.-F., Bensimon, D., Bensimon, A., Croquette, V.: Science 271, 1835 (1996) CrossRefGoogle Scholar
  81. 81.
    Strick, T.R., Croquette, V., Bensimon, D.: Proc. Natl. Acad. Sci. USA 95, 10579 (1998) CrossRefGoogle Scholar
  82. 82.
    Allemand, J.F., Bensimon, D., Lavery, R., Croquette, V.: Proc. Natl. Acad. Sci. USA 95, 14152 (1998) CrossRefGoogle Scholar
  83. 83.
    Lt’eger, J.F., Romano, G., Sarkar, A., Robert, J., Bourdieu, L., Chatenay, D., Marko, J.F.: Phys. Rev. Lett. 83, 1066 (1999) CrossRefGoogle Scholar
  84. 84.
    Bustamante, C., Marko, J.F., Siggia, E.D., Smith, S.: Science 265, 1599 (1994) CrossRefGoogle Scholar
  85. 85.
    Marko, J.F., Siggia, E.D.: Macromolecules 28, 8759 (1995) CrossRefGoogle Scholar
  86. 86.
    Yu, M.F., Lourie, O., Dyer, M.J., Moloni, K., Ruoff, R.S.: Science 287, 637 (2000) CrossRefGoogle Scholar
  87. 87.
    Yu, M.F., Yakobson, B.I., Ruoff, R.S.: J. Phys. Chem. B 104, 8764 (2000) CrossRefGoogle Scholar
  88. 88.
    Cumings, J., Zettl, A.: Science 289, 602 (2000) CrossRefGoogle Scholar
  89. 89.
    Tuzun, R.E., Noid, D.W., Sumpter, B.G.: Nanotechnology 6, 52 (1995) CrossRefGoogle Scholar
  90. 90.
    Srivastava, D.W.: Nanotechnology 8, 186 (1997) CrossRefGoogle Scholar
  91. 91.
    Forro, L.: Science 289(5479), 560 (2000) CrossRefGoogle Scholar
  92. 92.
    Zheng, Q., Jiang, Q.: Phys. Rev. Lett. 88, 045503 (2002) CrossRefGoogle Scholar
  93. 93.
    Kresse, H.P., et al.: Four-helix bundle topology re-engineered: monomeric Rop protein variants with different loop arrangements. Protein Eng. 14(11), 897–901 (2001) CrossRefGoogle Scholar
  94. 94.
    Balzani, V., et al.: Molecular Devices and Machines. Wiley–VCH, New York–Weinheim (2003) Google Scholar
  95. 95.
    Finer, J.T., et al.: Nature 368, 113 (1994) CrossRefGoogle Scholar
  96. 96.
    Svoboda, K., et al.: Nature 365, 721 (1993) CrossRefGoogle Scholar
  97. 97.
    Howard, J.: Mechanics of Motor Proteins and the Cytoskeleton. Sinauer, Sunderland (2001) Google Scholar
  98. 98.
    Wuite, G.J.L., et al.: Nature 404, 103 (2000) CrossRefGoogle Scholar
  99. 99.
    Beissenhirtz, M.K., Willner, I.: Org. Biomol. Chem. 4, 3392 (2006) CrossRefGoogle Scholar
  100. 100.
    Mandal, M., Breaker, R.R.: Nat. Rev. Mol. Cell Biol. 5, 451 (2004) CrossRefGoogle Scholar
  101. 101.
    Buranachai, C., et al.: Nano Lett. 6, 496 (2006) CrossRefGoogle Scholar
  102. 102.
    Müller, B.K., et al.: Nano Lett. 6, 2814 (2006) CrossRefGoogle Scholar
  103. 103.
    Liu, D.S., et al.: J. Am. Chem. Soc. 128, 2067 (2006) CrossRefGoogle Scholar
  104. 104.
    Liedl, T., et al.: Angew. Chem. Int. Ed. 45, 5007 (2006) CrossRefGoogle Scholar
  105. 105.
    Hazarika, P., et al.: Angew. Chem. Int. Ed. 43, 6469 (2004) CrossRefGoogle Scholar
  106. 106.
    Yan, H., et al.: Nature 415, 62 (2002) CrossRefGoogle Scholar
  107. 107.
    Feng, L.P., et al.: Angew. Chem. Int. Ed. 42, 4342 (2003) CrossRefGoogle Scholar
  108. 108.
    Shu, W.M., et al.: J. Am. Chem. Soc. 127, 17054 (2005) CrossRefGoogle Scholar
  109. 109.
    Yang, X.P., et al.: Biopolymers 45, 69 (1998) CrossRefGoogle Scholar
  110. 110.
    Yurke, B., et al.: Nature 406, 605 (2000) CrossRefGoogle Scholar
  111. 111.
    Simmel, F.C., Yurke, B.: Phys. Rev. E 63, 041913 (2001) CrossRefGoogle Scholar
  112. 112.
    Mitchell, J.C., Yurke, B.: DNA Computing, 7th International Workshop on DNA-Based Computers. LNCS, vol. 2340, p. 258. Springer, Heidelberg (2002) Google Scholar
  113. 113.
    Shen, W.Q., et al.: Angew. Chem. Int. Ed. 43, 4750 (2004) CrossRefGoogle Scholar
  114. 114.
    Chen, Y., et al.: Angew. Chem. Int. Ed. 43, 3554 (2004) CrossRefGoogle Scholar
  115. 115.
    Chhabra, R., et al.: Nano Lett. 6, 978 (2006) CrossRefGoogle Scholar
  116. 116.
    Seeman, N.C.: Trends Biochem. Sci. 30, 119 (2005) CrossRefGoogle Scholar
  117. 117.
    Shin, J.S., Pierce, N.A.: J. Am. Chem. Soc. 126, 10834 (2004) CrossRefGoogle Scholar
  118. 118.
    Sherman, W.B., Seeman, N.C.: Nano Lett. 4, 1203 (2004) CrossRefGoogle Scholar
  119. 119.
    Tian, Y., Mao, C.: J. Am. Chem. Soc. 126, 11410 (2004) CrossRefGoogle Scholar
  120. 120.
    Yin, P., et al.: Angew. Chem. Int. Ed. 43, 4906 (2004) CrossRefGoogle Scholar
  121. 121.
    Tian, Y., et al.: Angew. Chem. Int. Ed. 44, 4355 (2005) CrossRefGoogle Scholar
  122. 122.
    Pei, R., et al.: J. Am. Chem. Soc. 128, 12693 (2006) CrossRefGoogle Scholar
  123. 123.
    Li, J.W.J., Tan, W.H.: Nano Lett. 2, 315 (2002) CrossRefGoogle Scholar
  124. 124.
    Makita, N., et al.: Nucleic Acids Symp. Ser. 48, 173 (2004) CrossRefGoogle Scholar
  125. 125.
    Fahlman, R.P., et al.: Nano Lett. 3, 1073 (2003) CrossRefGoogle Scholar
  126. 126.
    Anelli, P.-L., Spencer, N., Stoddart, J.F.: A molecular shuttle. J. Am. Chem. Soc. 113, 5131–5133 (1991) CrossRefGoogle Scholar
  127. 127.
    Balzani, V.V., Credi, A., Raymo, F.M., Stoddart, J.F.: Artificial molecular machines. Angew. Chem. Int. Ed. Engl. 39, 3348–3391 (2000) CrossRefGoogle Scholar
  128. 128.
    Schalley, C.A., Beizai, K., Vogtle, F.: On the way to rotaxane-based molecular motors: studies in molecular mobility and topological chirality. Acc. Chem. Res. 34, 465–476 (2001) CrossRefGoogle Scholar
  129. 129.
    Gatti, F.G., Leon, S., Wong, J.K.Y., Bottari, G., Altieri, A., et al.: Photoisomerization of a rotaxane hydrogen bonding template: light-induced acceleration of a large amplitude rotational motion. Proc. Natl. Acad. Sci. USA 100, 10–14 (2003) CrossRefGoogle Scholar
  130. 130.
    Bermudez, V.V., Capron, N., Gase, T., Gatti, F.G., Kajzar, F., et al.: Influencing intramolecular motion with an alternating electric field. Nature 406, 608–611 (2000) CrossRefGoogle Scholar
  131. 131.
    Fyfe, M.C.T., Stoddart, J.F.: Synthetic supramolecular chemistry. Acc. Chem. Res. 30, 393–401 (1997) CrossRefGoogle Scholar
  132. 132.
    Ashton, P.R., Goodnow, T.T., Kaifer, A.W., Reddington, M.V., Slawin, A.M.Z., Spencer, N., Stoddart, J.F., Vicent, C., Williams, D.J.: A [2]catenane made to order. Angew. Chem. Int. Ed. Eng. 28, 1396–1399 (1989) CrossRefGoogle Scholar
  133. 133.
    Deleuze, M.S.: Can benzylic amide [2]catenane rings rotate on graphite? J. Am. Chem. Soc. 122, 1130–1143 (2000) CrossRefGoogle Scholar
  134. 134.
    Maiti, A.: Multiscale modeling with carbon nanotubes. Microelectron. J. (2006) Google Scholar
  135. 135.
    Liu, Y.J., Chen, X.L.: Continuum models of carbon nanotube-based composites using the boundary element method. J. Bound. Elem. 1(2), 316–335 (2003) MathSciNetGoogle Scholar
  136. 136.
    Karakasidis, T.E., Charitidis, C.A.: Multiscale modeling in nanomaterials science. Mater. Sci. Eng. (2006) Google Scholar
  137. 137.
    Frenkel, D., Smit, B.: Understanding Molecular Simulation: From Algorithms to Applications, 2nd edn. Academic Press, San Diego (2001) Google Scholar
  138. 138.
    Ghoniem, N.M., Busso, E.P., Kioussis, N., Huang, H.: Multiscale modelling of nanomechanics and micromechanics: an overview. Philos. Mag. 83(31–34), 3475–3528 (2003) CrossRefGoogle Scholar
  139. 139.
    Braatz, R.D., et al.: Perspectives on the design and control of multiscale systems. J. Process Control 16, 193–204 (2006) CrossRefGoogle Scholar
  140. 140.
    Feller, E., Zhang, Y.H., Pastor, R.W., Brooks, B.R.: Constant pressure molecular dynamics simulationthe Langevin piston method. Chem. Phys. J. 103, 4613–4621 (1995) CrossRefGoogle Scholar
  141. 141.
    Hetherington, J., et al.: Addressing the challenges of multiscale model management in systems biology. Comput. Chem. Eng. (2006) Google Scholar
  142. 142.
    Ahmed, A., Gohlke, H.: Multiscale modeling of macromolecular conformational changes combining concepts from rigidity and elastic network theory. Proteins Struct. Funct. Bioinf. 63, 1038–1051 (2006) CrossRefGoogle Scholar
  143. 143.
    Feig, M., Karanicolas, J., Brooks, C.L.: MMTSB Tool Set: enhanced sampling and multiscale modeling methods for applications in structural biology. J. Mol. Graph. Model. 22, 377–395 (2004) CrossRefGoogle Scholar
  144. 144.
    Villa, E., Balaeff, A., Schulten, K.: Structural dynamics of the lac repressor-DNA complex revealed by a multiscale simulation. Proc. Natl. Acad. Sci. USA 102(19), 6783–6788 (2005) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Institut PRISMEENSI BourgesBourgesFrance

Personalised recommendations