Skip to main content

Evaluating Site Quality

  • Chapter
  • First Online:
Book cover Modeling Forest Trees and Stands

Abstract

Assessment of site quality is essential for identifying the productive potential of land and for providing a frame of reference for silvicultural diagnosis and prescription. Site index (average height of the dominant portion of the stand at an arbitrarily chosen age) is the most commonly used indicator of site quality for even-aged, single-species forest stands. This chapter provides a detailed treatment of various methods for computing dominant height, data sources for developing site index curves (temporary plots, permanent plots, tree stem analysis), and commonly-applied alternative methods for empirically fitting site index equations. Methods described for fitting site index functions include the guide curve approach, use of age and height at index age as predictors, segmented models, differential equations approach, difference equations (with extensive attention given to the algebraic difference and generalized algebraic difference approaches), and use of mixed-effects models. The chapter concludes with a discussion of including concomitant information in height-age models and considering the effects of stand density on dominant height development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The so-called “coefficient of variation method” (e.g. Brickell 1968) can be applied to circumvent the proportionality assumption, but it is difficult to develop satisfactory site index curves using this technique and it is seldom applied in practice.

References

  • Aertsen W, Kint V, van Orshoven J, Ӧzkan K, Muys B (2010) Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests. Ecol Model 221:1119–1130

    Article  Google Scholar 

  • Alexander RR, Tackle D, Dahms WG (1967) Site indexes for lodgepole pine, with corrections for stand density: methodology. USDA Forest Service Research Paper RM-29

    Google Scholar 

  • Amaro A, Reed D, Tomé M, Themido I (1998) Modeling dominant height growth: Eucalyptus plantations in Portugal. For Sci 44:37–46

    Google Scholar 

  • Amateis RL, Burkhart HE (1985) Site index curves for loblolly pine plantations on cutover site-prepared lands. South J Appl For 9:166–169

    Google Scholar 

  • Amateis RL, McDill ME (1989) Developing growth and yield models using dimensional analysis. For Sci 35:329–337

    Google Scholar 

  • Amateis RL, Prisley SP, Burkhart HE, Liu J (2006) The effect of physiographic region and geographic locale on predicting the dominant height and basal area of loblolly pine plantations. South J Appl For 30:147–153

    Google Scholar 

  • Antón-Fernández C, Burkhart HE, Strub MR, Amateis RL (2011) Effects of initial spacing on height development of loblolly pine. For Sci 57:201–211

    Google Scholar 

  • Bailey RL, Cieszewski CJ (2000) Development of a well-behaved site-index equation: jack pine in north-central Ontario: comment. Can J For Res 30:1667–1668

    Article  Google Scholar 

  • Bailey RL, Clutter JL (1974) Base-age invariant polymorphic site curves. For Sci 20:155–159

    Google Scholar 

  • Batho A, Garcia O (2006) De Perthuis and the origins of site index: a historical note. FBMIS 1:1–10

    Google Scholar 

  • Beaulieu J, Raulier F, Prégent G, Bousquet J (2011) Predicting site index from climatic, edaphic, and stand structural properties for seven plantation-grown conifer species in Quebec. Can J For Res 41:682–693

    Article  Google Scholar 

  • Beck DE (1971) Height-growth patterns and site index of white pine in the Southern Appalachians. For Sci 17:252–260

    Google Scholar 

  • Bennett FA (1975) Slash pine: some intriguing growth and yield relationships. USDA Forest Service Research Paper SE-133

    Google Scholar 

  • Biging GS (1985) Improved estimates of site index curves using a varying-parameter model. For Sci 31:248–259

    Google Scholar 

  • Borders BE, Bailey RL, Ware KD (1984) Slash pine site index from a polymorphic model by joining (splining) nonpolynomial segments with an algebraic difference method. For Sci 30:411–423

    Google Scholar 

  • Boyer WD (1983) Variations in height-over-age curves for young longleaf pine plantations. For Sci 29:15–27

    Google Scholar 

  • Bravo-Oviedo A, Rio MD, Montero G (2004) Site index curves and growth model for Mediterranean maritime pine (Pinus pinaster, Ait.) in Spain. For Ecol Manage 201:187–197

    Article  Google Scholar 

  • Bravo-Oviedo A, Rio MD, Montero G (2007) Geographic variation and parameter assessment in generalized algebraic difference site index modeling. For Ecol Manage 247:107–119

    Article  Google Scholar 

  • Bravo-Oviedo A, Tomé M, Bravo F, Montero G, Rio MD (2008) Dominant height growth equations including site attributes in the generalized algebraic difference approach. Can J For Res 38:2348–2358

    Article  Google Scholar 

  • Brewer JA, Burns PY, Cao QV (1985) Short-term projection accuracy of five asymptotic height-age curves for loblolly pine. For Sci 31:414–418

    Google Scholar 

  • Brickell JE (1968) A method of constructing site index curves from measurements of three age and height – its application to Inland Douglas-Fir. USDA Forest Service Research Paper INT-47

    Google Scholar 

  • Brisco D, Klinka K (2002) Height growth models for western larch in British Columbia. West J Appl For 17:66–74

    Google Scholar 

  • Bruce D (1981) Consistent height-growth and growth-rate estimates for remeasured plots. For Sci 27:711–725

    Google Scholar 

  • Burkhart HE, Tennent RB (1977a) Site index equations for radiata pine in New Zealand. N Z J For Sci 7:408–416

    Google Scholar 

  • Burkhart HE, Tennent RB (1977b) Site index equations for Douglas fir in Kaingaroa forest. N Z J For Sci 7:417–419

    Google Scholar 

  • Calegario N, Daniels RF, Maestri R, Neiva R (2005) Modeling dominant height growth based on nonlinear mixed-effects model: a clonal Eucalyptus plantation case study. For Ecol Manage 204:11–20

    Article  Google Scholar 

  • Cao QV (1993) Estimating coefficients of base-age-invariant site index equations. Can J For Res 23:2343–2347

    Article  Google Scholar 

  • Carmean WH (1972) Site index curves for upland oaks in the Central States. For Sci 18:109–120

    Google Scholar 

  • Carmean WH (1975) Forest site quality evaluation in the United States. Adv Agron 27:209–269

    Article  Google Scholar 

  • Carmean WH, Lenthall DJ (1989) Height-growth and site-index curves for jack pine in north central Ontario. Can J For Res 19:215–224

    Article  Google Scholar 

  • Carvalho JP, Parresol BR (2005) A site model for Pyrenean oak (Quercus pyrenaica) stands using a dynamic algebraic difference equation. Can J For Res 35:93–99

    Article  Google Scholar 

  • Cieszewski CJ (2000) Analytical site index solution for the generalized log-logistic height equation. For Sci 46:291–296

    Google Scholar 

  • Cieszewski CJ (2001) Three methods of deriving advanced dynamic site equations demonstrated on inland Douglas-fir site curves. Can J For Res 31:165–173

    Article  Google Scholar 

  • Cieszewski CJ (2002) Comparing fixed- and variable-base-age site equations having single versus multiple asymptotes. For Sci 48:7–23

    Google Scholar 

  • Cieszewski CJ (2003) Developing a well-behaved dynamic site equation using a modified Hossfeld IV function Y3 = (axm)/(c + xm−1), a simplified mixed model and scant subalpine fir data. For Sci 49:539–554

    Google Scholar 

  • Cieszewski CJ (2004) GADA derivation of dynamic site equations with polymorphism and variable asymptotes from Richards, Weibull, and other exponential functions. University of Georgia, PMRC-TR 2000-5

    Google Scholar 

  • Cieszewski CJ, Bailey RL (2000) Generalized algebraic difference approach: theory based derivation of dynamic site equations with polymorphism and variable asymptotes. For Sci 46:116–126

    Google Scholar 

  • Cieszewski CJ, Bella IE (1989) Polymorphic height and site index curves for lodgepole pine in Alberta. Can J For Res 19:1151–1160

    Article  Google Scholar 

  • Cieszewski CJ, Strub M (2008) Generalized algebraic difference approach derivation of dynamic site equations with polymorphism and variable asymptotes from exponential and logarithmic functions. For Sci 54:303–315

    Google Scholar 

  • Cieszewski CJ, Harrison M, Martin SW (2000) Practical methods for estimating non-biased parameters in self-referencing growth and yield models. University of Georgia, PMRC-TR 2000-7

    Google Scholar 

  • Cieszewski CJ, Zasada M, Strub M (2006) Analysis of different base models and methods of site model derivation for Scots pine. For Sci 52:187–197

    Google Scholar 

  • Clutter JL, Jones Jr EP (1980) Prediction of growth after thinning in old-field slash pine plantations. USDA Forest Service Research Paper SE-217

    Google Scholar 

  • Clutter JL, Lenhart JD (1968) Site index curves for old-field loblolly pine plantations in the Georgia Piedmont. Georgia Forest Research Council Report 22-Series 1

    Google Scholar 

  • Corral RJ, Álvarez GJ, Ruiz González AD, Gadow Kv (2004) Compatible height and site index models for five pine species in El Salto, Durango (Mexico). For Ecol Manage 201:145–160

    Article  Google Scholar 

  • Curtis RO (1964) A stem-analysis approach to site-index curves. For Sci 10:241–256

    Google Scholar 

  • Curtis RO, Reukema DL (1970) Crown development and site estimates in a Douglas-fir plantation spacing test. For Sci 16:287–301

    Google Scholar 

  • Curtis RO, DeMars DJ, Herman FR (1974) Which dependent variable in site-index-height-age regressions? For Sci 20:74–87

    Google Scholar 

  • Dahms WG (1963) Correction for a possible bias in developing site index curves from sectioned tree data. J For 61:25–27

    Google Scholar 

  • Devan JD, Burkhart HE (1982) Polymorphic site index equations for loblolly pine based on a segmented polynomial differential model. For Sci 28:544–555

    Google Scholar 

  • Diéguez-Aranda U, Burkhart HE, Soalleiro RR (2005a) Modeling dominant height growth of radiata pine (Pinus radiata D. Don) plantations in north-western Spain. For Ecol Manage 215:271–284

    Article  Google Scholar 

  • Diéguez-Aranda U, Gonzalez JGA, Anta MB, Alboreca AR (2005b) Site quality equations for Pinus sylvestris L. plantations in Galicia (northwestern Spain). Ann For Sci 62:143–152

    Article  Google Scholar 

  • Diéguez-Aranda U, Burkhart HE, Amateis RL (2006) Dynamic site model for loblolly pine (Pinus taeda L.) plantations in the United States. For Sci 52:262–272

    Google Scholar 

  • Dyer ME, Bailey RL (1987) A test of six methods for estimating true heights from stem analysis data. For Sci 33:3–13

    Google Scholar 

  • Ek AR (1971) A formula for white spruce site index curves. University of Wisconsin, Forest Research Notes. No. 161

    Google Scholar 

  • Elfving B, Kiviste A (1997) Construction of site index equations for Pinus sylvestris L. using permanent plot data in Sweden. For Ecol Manage 98:125–134

    Article  Google Scholar 

  • Eriksson H, Johansson U, Kiviste A (1997) A site-index model for pure and mixed stands of Betula pendula and Betula pubescens in Sweden. Scand J For Res 12:149–156

    Article  Google Scholar 

  • Fabbio G, Frattegiani M, Manetti MC (1994) Height estimation in stem analysis using second differences. For Sci 40:329–340

    Google Scholar 

  • Fang Z, Bailey RL (2001) Nonlinear mixed effects modeling for slash pine dominant height growth following intensive silvicultural treatments. For Sci 47:287–300

    Google Scholar 

  • Farrelly N, Ní Dhubháin Á, Nieuwenhuis M (2011) Site index of Sitka spruce (Picea sitchensis) in relation to different measures of site quality in Ireland. Can J For Res 41:265–278

    Article  Google Scholar 

  • Feng Z, Stadt KJ, Lieffers VJ, Huang S (2006) Linking juvenile growth of white spruce with site index. For Chron 82:819–824

    Google Scholar 

  • Fontes L, Tomé M, Coelho MB, Wright H, Luis JS, Savil P (2003) Modelling dominant height growth of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) in Portugal. Forestry 76:509–523

    Article  Google Scholar 

  • Fortin M, Daigle G, Chhun-Huor U, Bégin J, Archambault L (2007) A variance-covariance structure to take into account repeated measurements and heteroscedasticity in growth modeling. Eur J For Res 126:573–585

    Article  Google Scholar 

  • Furnival GM, Gregoire TG, Valentine HT (1990) An analysis of three methods for fitting site-index curves. For Sci 36:464–469

    Google Scholar 

  • García O (1983) A stochastic differential equation model for the height growth of forest stands. Biometrics 39:1059–1072

    Article  Google Scholar 

  • García O (1998) Estimating top height with variable plot size. Can J For Res 28:1509–1517

    Article  Google Scholar 

  • García O (1999) Height growth of Pinus radiata in New Zealand. N Z J For Sci 29:131–145

    Google Scholar 

  • García O (2005) Comparing and combining stem analysis and permanent sample plot data in site index models. For Sci 51:277–283

    Google Scholar 

  • García O (2011) Dynamical implications of the variability representation in site-index modelling. Eur J For Res 130:671–675

    Article  Google Scholar 

  • García O, Batho A (2005) Top height estimation in lodgepole pine sample plots. West J Appl For 20:64–68

    Google Scholar 

  • García O, Ruiz F (2003) A growth model for eucalypt in Galicia. Spain For Ecol Manage 173:49–62

    Article  Google Scholar 

  • Goelz JCJ, Burk TE (1992) Development of a well-behaved site index equation: jack pine in north central Ontario. Can J For Res 22:776–784

    Article  Google Scholar 

  • Goelz JCG, Burk TE (1996) Measurement error causes bias in site index equations. Can J For Res 26:1585–1593

    Article  Google Scholar 

  • Golden MS, Meldahl R, Knowe SA, Boyer WD (1981) Predicting site index for old-field loblolly pine plantations. South J Appl For 5:109–114

    Google Scholar 

  • Graney DL, Burkhart HE (1973) Polymorphic site index curves for shortleaf pine in the Ouachita Mountains. USDA Forest Service Research Paper SO-85

    Google Scholar 

  • Gregoire TG, Schabenberger O, Barrett JP (1995) Linear modeling of irregularly spaced, unbalanced, longitudinal data from permanent-plot measurements. Can J For Res 25:137–156

    Article  Google Scholar 

  • Hägglund B (1981) Evaluation of forest site productivity. For Abstr 42:515–527

    Google Scholar 

  • Hall DB, Bailey RL (2001) Modeling and prediction of forest growth variables based on multilevel nonlinear mixed models. For Sci 47:311–321

    Google Scholar 

  • Harms WR, Lloyd FT (1981) Stand structure and yield relationships in a 20-year-old loblolly pine spacing study. South J Appl For 5:162–166

    Google Scholar 

  • Harms WR, DeBell DS, Whitesell CD (1994) Stand and tree characteristics and stockability in Pinus taeda plantations in Hawaii and South Carolina. Can J For Res 24:511–521

    Article  Google Scholar 

  • Harms WR, Whitesell CD, DeBell DS (2000) Growth and development of loblolly pine in a spacing trial planted in Hawaii. For Ecol Manage 126:13–24

    Article  Google Scholar 

  • Heger L (1973) Effect of index age on the precision of site index. Can J For Res 3:1–6

    Article  Google Scholar 

  • Hu Z, García O (2010) A height-growth and site-index model for interior spruce in the sub-boreal spruce biogeoclimatic zone of British Columbia. Can J For Res 40:1175–1183

    Article  Google Scholar 

  • Johansson T (2011) Site index curves for poplar growing on former farmland in Sweden. Scand J For Res 26:161–170

    Article  Google Scholar 

  • Jones EA, Reed DD (1991) Improved site index curves for young red pine plantations in the Northern Lake States. North J Appl For 8:59–63

    Google Scholar 

  • Kariuki M (2002) Height estimation in complete stem analysis using annual radial growth measurements. Forestry 75:63–74

    Article  Google Scholar 

  • King JE (1966) Site index curves for Douglas-fir in the Pacific Northwest. Weyerhaeuser Forestry Paper No. 8

    Google Scholar 

  • Lappi J, Bailey RL (1988) A height prediction model with random stand and tree parameters: an alternative to traditional site index methods. For Sci 34:907–927

    Google Scholar 

  • Lappi J, Malinen J (1994) Random-parameter height/age models when stand parameters and stand age are correlated. For Sci 40:715–731

    Google Scholar 

  • Lauer DK, Kush JS (2010) Dynamic site index equation for thinned stands of even-aged natural longleaf pine. South J Appl For 34:28–37

    Google Scholar 

  • Lenhart JD (1972) An alternative procedure for improving height/age data from stem analysis. For Sci 18:332

    Google Scholar 

  • Lundgren AL, Dolid WA (1970) Biological growth functions describe published site index curves for Lake States timber species. USDA Forest Service Research Paper NC-36

    Google Scholar 

  • MacFarlane DW, Green EJ, Burkhart HE (2000) Population density influences assessment and application of site index. Can J For Res 30:1472–1475

    Article  Google Scholar 

  • Magnussen S (1999) Effect of plot size on estimates of top height in Douglas-fir. West J Appl For 14:17–27

    Google Scholar 

  • Magnussen S, Penner M (1996) Recovering time trends in dominant height from stem analysis. Can J For Res 26:9–22

    Article  Google Scholar 

  • McDill ME, Amateis RL (1992) Measuring forest site quality using the parameters of a dimensionally compatible height growth function. For Sci 38:409–429

    Google Scholar 

  • Meng SX, Huang S (2009) Improved calibration of non-linear mixed-effects models demonstrated on a height growth function. For Sci 55:238–248

    Google Scholar 

  • Meng SX, Huang S (2010) Incorporating correlated error structures into mixed forest growth models: prediction and inference implications. Can J For Res 40:977–990

    Article  Google Scholar 

  • Meng SX, Huang S, Yang Y, Trincado G, VanderSchaaf CL (2009) Evaluation of population-averaged and subject-specific approaches for modeling the dominant or codominant height of lodgepole pine trees. Can J For Res 39:1148–1158

    Article  Google Scholar 

  • Milner KS (1992) Site index and height growth curves for ponderosa pine, western larch, lodgepole pine, and Douglas-fir in western Montana. West J Appl For 7:9–14

    Google Scholar 

  • Monserud RA (1984) Height growth and site index curves for inland Douglas-fir based on stem analysis data and forest habitat type. For Sci 30:943–965

    Google Scholar 

  • Monserud RA (1985) Comparison of Douglas-fir site index and height growth curves in the Pacific Northwest. Can J For Res 15:673–679

    Article  Google Scholar 

  • Newberry JD (1991) A note on Carmean’s estimate of height from stem analysis data. For Sci 37:368–369

    Google Scholar 

  • Newnham RM (1988) A modification of the Ek-Payandeh nonlinear regression model for site index curves. Can J For Res 18:115–120

    Article  Google Scholar 

  • Nigh GD (1995) The geometric mean regression line: a method for developing site index conversion equations for species in mixed stands. For Sci 41:84–98

    Google Scholar 

  • Nord-Larsen T (2006) Developing dynamic site index curves for European beech (Fagus sylvatica L.) in Denmark. For Sci 52:173–181

    Google Scholar 

  • Northway SM (1985) Fitting site index equations and other self-referencing functions. For Sci 31:233–235

    Google Scholar 

  • Nothdurft A, Kublin E, Lappi J (2006) A non-linear hierarchical mixed model to describe tree height growth. Eur J For Res 125:281–289

    Article  Google Scholar 

  • Nunes L, Patrício M, Tomé J, Tomé M (2011) Modeling dominant height growth of maritime pine in Portugal using GADA methodology with parameters depending on soil and climate variables. Ann For Sci 68:311–323

    Article  Google Scholar 

  • OMNR, Ontario Forest Research Institute (2009) An evaluation of site index models for young black spruce and jack pine plantations in a changing climate. Ontario Ministry of Natural Resources, Sault Ste Marie, pp 1–31

    Google Scholar 

  • Palahí M, Tomé M, Pukkala T, Trasobares A, Montero G (2004) Site index model for Pinus sylvestris in north-east Spain. For Ecol Manage 187:35–47

    Article  Google Scholar 

  • Payandeh B, Wang Y (1994a) A site-index model remodified. Can J For Res 24:197–198

    Article  Google Scholar 

  • Payandeh B, Wang Y (1994b) Relative accuracy of a new base-age invariant site index model. For Sci 40:341–348

    Google Scholar 

  • Payandeh B, Wang Y (1995) Preliminary site index equations for three planted species in Northern Ontario. North J Appl For 12:57–63

    Google Scholar 

  • Pienaar LV, Shiver BD (1984) The effect of planting density on dominant height in unthinned slash pine plantations. For Sci 30:1059–1066

    Google Scholar 

  • Raulier F, Lambert M-C, Pothier D, Ung C-H (2003) Impact of dominant tree dynamics on site index curves. For Ecol Manage 184:65–78

    Article  Google Scholar 

  • Rennolls K (1978) “Top height”; its definition and estimation. Commonw For Rev 57:215–219

    Google Scholar 

  • Rennolls K (1995) Forest height growth modelling. For Ecol Manage 71:217–225

    Article  Google Scholar 

  • Richards FJ (1959) A flexible growth function for empirical use. J Exp Bot 10:290–300

    Article  Google Scholar 

  • Rivas JJC, González JGA, González ADR, Gadow Kv (2004) Compatible height and site index models for five pine species in El Salto, Durango (Mexico). For Ecol Manage 201:145–160

    Article  Google Scholar 

  • Salas C, García O (2006) Modelling height development of mature Nothofagus obliqua. For Ecol Manage 229:1–6

    Article  Google Scholar 

  • Schumacher FX (1939) A new growth curve and its application to timber-yield studies. J For 37:819–820

    Google Scholar 

  • Sharma M, Amateis RL, Burkhart HE (2002a) Top height definition and its effect on site index determination in thinned and unthinned loblolly pine plantations. For Ecol Manage 168:163–175

    Article  Google Scholar 

  • Sharma M, Burkhart HE, Amateis RL (2002b) Modeling the effect of density on the growth of loblolly pine trees. South J Appl For 26:124–133

    Google Scholar 

  • Sharma M, Burkhart HE, Amateis RL (2002c) Spacing rectangularity effect on the growth of loblolly pine plantations. Can J For Res 32:1451–1459

    Article  Google Scholar 

  • Sharma M, Smith M, Burkhart HE, Amateis RL (2006) Modeling the impact of thinning on height development of dominant and codominant loblolly pine trees. Ann For Sci 63:349–354

    Article  Google Scholar 

  • Skovsgaard JP, Vanclay JK (2008) Forest site productivity: a review of the evolution of dendrometric concepts for even-aged stands. Forestry 81:13–31

    Article  Google Scholar 

  • Stage AR (1963) A mathematical approach to polymorphic site index curves for grand fir. For Sci 9:167–180

    Google Scholar 

  • Strand L (1964) Numerical constructions of site-index curves. For Sci 10:410–414

    Google Scholar 

  • Strub M, Cieszewski CJ (2006) Base-age invariance properties of two techniques for estimating the parameters of site index models. For Sci 52:182–186

    Google Scholar 

  • Subedi N, Sharma M (2010) Evaluating height-age determination methods for jack pine and black spruce plantations using stem analysis data. North J Appl For 27:50–55

    Google Scholar 

  • Thrower JS, Goudie JW (1992) Estimating dominant height and site index for even-aged interior Douglas-fir in British Columbia. West J Appl For 7:20–25

    Google Scholar 

  • Trousdell KB, Beck DE, Lloyd FT (1974) Site index for loblolly pine in the Atlantic Coastal plain of the Carolinas and Virginia. USDA Forest Service Research Paper SE-115, 11 p

    Google Scholar 

  • Upadhyay A, Eid T, Sankhayan PL (2005) Construction of site index equations of even aged stands of Tectona grandis (teak) from permanent plot data in India. For Ecol Manage 212:14–22

    Article  Google Scholar 

  • Vanclay JK (1992) Assessing site productivity in tropical moist forests: a review. For Ecol Manage 54:257–287

    Article  Google Scholar 

  • Walters DK, Gregoire TG, Burkhart HE (1989) Consistent estimation of site index curves fitted to temporary plot data. Biometrics 45:23–33

    Article  Google Scholar 

  • Walters DK, Burkhart HE, Reynolds MR Jr, Gregoire TG (1991) A Kalman filter approach to localizing height-age functions. For Sci 37:1526–1537

    Google Scholar 

  • Wang Y, Payandeh B (1994a) A bi-segmental curve fitting approach to improve the accuracy of site index equations. For Ecol Manage 67:35–38

    Article  Google Scholar 

  • Wang Y, Payandeh B (1994b) Application of the Kalman filter model in site index equation construction. Can J For Res 24:1415–1418

    Article  Google Scholar 

  • Wang Y, Payandeh B (1995) A base-age invariant site index model for aspen stands in north central Ontario. For Ecol Manage 72:207–211

    Article  Google Scholar 

  • Wang Y, Huang S, Yang RC, Tang S (2004) Error-in-variable method to estimate parameters for reciprocal base-age invariant site index models. Can J For Res 34:1929–1937

    Article  Google Scholar 

  • Wang M, Borders B, Zhao D (2007) Parameter estimation of base-age invariant site index models: which data structure to use? For Sci 53:541–555

    Google Scholar 

  • Wang M, Borders B, Zhao D (2008a) An empirical comparison of two subject-specific approaches to dominant heights modeling: the dummy variable method and the mixed model method. For Ecol Manage 255:2659–2669

    Article  Google Scholar 

  • Wang M, Rennolls K, Borders B (2008b) Base-age invariant site index models for a generalized algebraic parameter prediction approach. For Sci 54:625–632

    Google Scholar 

  • Weiskittel AR, Hann DW, Hibbs DE, Tzeng YL, Bluhm AA (2009) Modeling top height of red alder plantations. For Ecol Manage 258:323–331

    Article  Google Scholar 

  • Yang Y, Huang S (2011) Estimating a multilevel dominant height-age model from nested data with generalized errors. For Sci 57:102–116

    Google Scholar 

  • Zeide B (1999) Pattern of height growth for southern pine species. For Ecol Manage 118:183–196

    Article  Google Scholar 

  • Zeide B, Zakrzewski WT (1993) Selection of site trees: the combined method and its application. Can J For Res 23:1019–1025

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Burkhart, H.E., Tomé, M. (2012). Evaluating Site Quality. In: Modeling Forest Trees and Stands. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3170-9_7

Download citation

Publish with us

Policies and ethics