Skip to main content

Structural Relaxation and Viscosity Behavior in Supercooled Liquids at the Glass Transition

  • Chapter
  • First Online:
Thermal analysis of Micro, Nano- and Non-Crystalline Materials

Part of the book series: Hot Topics in Thermal Analysis and Calorimetry ((HTTC,volume 9))

  • 2614 Accesses

Abstract

Glasses are amorphous materials that lack the periodicity of crystalline substances. Structurally, they resemble metastable supercooled liquids but behave mechanically like solids. A typical way of preparing glass is by cooling a viscous supercooled liquid fast enough to avoid crystallization. Although this way of preparation is known for several thousands of years, the underlying molecular mechanism is not fully understood (Debenedetti PG, Metastable liquids. Concepts and principles. Princeton University Press, Princeton, 1996; Debenedetti PG, Stillinger FH, Supercooled liquids and the glass transition. Nature (Lond) 410:259–267, 2001).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Debenedetti PG (1996) Metastable liquids. Concepts and principles. Princeton University Press, Princeton

    Google Scholar 

  2. Debenedetti PG, Stillinger FH (2001) Supercooled liquids and the glass transition. Nature (Lond) 410:259–267

    Article  CAS  Google Scholar 

  3. Ediger MD, Angell CA, Nagel SR (1996) Supercooled liquids and glasses. J Phys Chem 100:13200–13212

    Article  CAS  Google Scholar 

  4. Angell CA, Ngai KL, McKenna GB, McMillan PF, Martin SW (2000) Relaxation in glass-forming liquids and amorphous solids. J Appl Phys 88:3113–3157

    Article  CAS  Google Scholar 

  5. Scherer GW (1986) Relaxation in glass and composites. Wiley, New York

    Google Scholar 

  6. Angell CA (1988) Perspective on the glass transition. J Phys Chem Solids 49:863–871

    Article  CAS  Google Scholar 

  7. Angell CA (1991) Relaxation in liquids, polymers and plastic crystals – strong/fragile patterns and problems. J Non-Cryst Solids 131–133:13–31

    Article  Google Scholar 

  8. Angell CA (1995) Formation of glasses from liquids and biopolymers. Science 267:1924–1935

    Article  CAS  Google Scholar 

  9. Koštál P, Málek J (2010) Viscosity of selenium melt. J Non-Cryst Solids 356:2083–2806

    Article  Google Scholar 

  10. Málek J, Shánělová J (2005) Structural relaxation of As2Se3 glass and viscosity of supercooled liquid. J Non-Cryst Solids 351:3458–3467

    Article  Google Scholar 

  11. Bernatz KM, Echevería I, Simon SL, Plazek DJ (2002) Characterization of the molecular structure of amorphous selenium using recoverable creep compliance measurements. J Non-Cryst Solids 307–310:790–801

    Article  Google Scholar 

  12. Rolland CM, Santangelo PG, Plazek DJ, Bernatz KM (1999) Creep of selenium near the glass temperature. J Chem Phys 111:9337–9342

    Article  Google Scholar 

  13. Scopigno T, Ruocco G, Sette F, Monaco G (2003) Is the fragility of a liquid embedded in the properties of its glass? Science 302:849–852

    Article  CAS  Google Scholar 

  14. Kovacs A (1963) Transition vitreuse dans les polymeres amorphes. Etude phénomenologique. Fortschr Hochpolym Forsch 3:394–507

    Article  Google Scholar 

  15. Svoboda R, Pustková P, Málek J (2006) Volume relaxation of a-Se studied by mercury dilatometry. J Non-Cryst Solids 352:4793–4799

    Article  CAS  Google Scholar 

  16. Tool AQ (1946) Relation between inelastic deformability and thermal expansion of glass in its annealing range. J Am Ceram Soc 29:240–253

    Article  CAS  Google Scholar 

  17. Hutchinson JM (1995) Physical aging of polymers. Prog Polym Sci 20:703–760

    Article  CAS  Google Scholar 

  18. Hodge IM (1994) Enthalpy relaxation and recovery in amorphous materials. J Non-Cryst Solids 169:211–266

    Article  CAS  Google Scholar 

  19. Naraynaswamy OS (1971) A model of structural relaxation in glass. J Am Ceram Soc 54:491–498

    Article  Google Scholar 

  20. Moynihan CT, Easteal AJ, DeBolt MA, Tucker J (1976) Dependence of the fictive temperature of glass on the cooling rate. J Am Ceram Soc 59:12–16

    Article  CAS  Google Scholar 

  21. Adam G, Gibbs JH (1965) On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J Chem Phys 43:139–146

    Article  CAS  Google Scholar 

  22. Scherer GW (1984) Use of the Adam–Gibbs equation in the analysis of structural relaxation. J Am Ceram Soc 67:504–511

    Article  CAS  Google Scholar 

  23. Hodge IM (1987) Effects of annealing and prior history on enthalpy relaxation in glassy polymers. 6. Adam–Gibbs formulation of nonlinearity. Macromolecules 20:2897–2908

    Article  CAS  Google Scholar 

  24. Málek J, Svoboda R, Pustková P, Čičmanec P (2009) Volume and enthalpy relaxation of a-Se in the glass transition region. J Non-Cryst Solids 355:264–272

    Article  Google Scholar 

  25. Echeverría I, Pl Kolek, Plazek DJ, Simon SL (2003) Enthalpy recovery, creep and creep-recovery measurements during physical aging of amorphous selenium. J Non-Cryst Solids 324:242–255

    Article  Google Scholar 

  26. Matsuishi K, Nogi K, Ogura H, Onari S, Arai T (1998) Dynamics of glass transition of bulk a-Se and Se clusters incorporated into zeolites. J Non-Cryst Solids 227:799–803

    Article  Google Scholar 

  27. Cortés P, Montserrat S, Ledru J, Saiter JM (1998) Enthalpy relaxation in GexSe1-x chalcogenide glasses. J Non-Cryst Solids 235:522–526

    Article  Google Scholar 

  28. Easteal AJ, Wilder JA, Mohr RK, Moynihan CT (1977) Heat capacity and structural relaxation of enthalpy in As2Se3 glass. J Am Ceram Soc 60:134–138

    Article  CAS  Google Scholar 

  29. Moynihan CT, Macedo PB, Monrose CJ, Gupta PK, DeBolt MA, Dill JF, Dom BE, Drake PW, Easteal AJ, Elterman PB, Moeller RP, Sasabe H, Wilder JA (1976) Structural relaxation in vitreous materials. Ann N Y Acad Sci 279:15–35

    Article  CAS  Google Scholar 

  30. Kasap SO, Tonchev D (2001) Glass transformation in vitreous As2Se3 studied by conventional and temperature-modulated differential scanning calorimetry. J Mater Res 16:2399–2407

    Article  CAS  Google Scholar 

  31. Tverjanovich A, Vagizova E (1999) Thermal expansion of glasses in the As2Se3-AsI3 system. J Non-Cryst Solids 243:277–280

    Article  CAS  Google Scholar 

  32. Málek J (1998) Rate-determining factors for structural relaxation in non-crystalline materials. I. Stabilization period of isothermal volume relaxation. Thermochim Acta 313:181–190

    Article  Google Scholar 

  33. Málek J, Montserrat S (1998) Rate-determining factors for structural relaxation in non-crystalline materials. II. Normalize volume and enthalpy relaxation rate. Thermochim Acta 313:191–200

    Article  Google Scholar 

  34. Málek J (1998) Volume and enthalpy relaxation rate in glassy materials. Macromolecules 31:8312–8322

    Article  Google Scholar 

  35. Johari GP (2001) Heat capacity and entropy of an equilibrium liquid from Tg to 0 K, and examining the conjectures of an underlying thermodynamic transition. Chem Phys 265:217–231

    Article  CAS  Google Scholar 

  36. Angell CA (1988) Structural instability and relaxation in liquid and glassy phases near the fragile liquid limit. J Non-Cryst Solids 102:205–221

    Article  CAS  Google Scholar 

  37. Málek J (1998) Dilatometric study of structural relaxation in arsenic sulfide glass. Thermochim Acta 311:183–198

    Article  Google Scholar 

  38. Svoboda R, Pustková P, Málek J (2008) Structural relaxation of polyvinylacetate. Polymer 49:3176–3185

    Article  CAS  Google Scholar 

  39. Privalko VP, Demchenko SS, Lipatov YS (1986) Structure-dependent enthalpy relaxation at the glass transition of polystyrenes. Macromolecules 19:901–904

    Article  CAS  Google Scholar 

  40. Scherer GW (1990) Theories of relaxation. J Non-Cryst Solids 123:75–89

    Article  CAS  Google Scholar 

  41. Novikov VN, Sokolov AP (2004) Poisson’s ratio and the fragility of glass-forming liquids. Nature (Lond) 431:961–963

    Article  CAS  Google Scholar 

  42. Dyre JC (2004) Heirs of liquid treasures. Nat Mater 3:749–750

    Article  CAS  Google Scholar 

  43. Jenniskens P, Blake DF (1994) Structural transitions in amorphous water ice and astrophysical implications. Science 265:753–756

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude for financial support from the Czech Science Foundation under grants No. P106/11/1152 and Ministry of Education Youth and Sports under grant No. MSM 0021627501.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiří Málek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Málek, J., Svoboda, R. (2012). Structural Relaxation and Viscosity Behavior in Supercooled Liquids at the Glass Transition. In: Šesták, J., Šimon, P. (eds) Thermal analysis of Micro, Nano- and Non-Crystalline Materials. Hot Topics in Thermal Analysis and Calorimetry, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3150-1_7

Download citation

Publish with us

Policies and ethics