Skip to main content

Equilibrium Background of Processes Initiated by Heating and Ehrenfest’s Classification of Phase Transitions

  • Chapter
  • First Online:
Book cover Thermal analysis of Micro, Nano- and Non-Crystalline Materials

Part of the book series: Hot Topics in Thermal Analysis and Calorimetry ((HTTC,volume 9))

Abstract

For a long time, transmutations, metamorphoses, and changes of substances (of fluid and solid bodies) have been the original subject of any investigation of alchemists as well as of more recent chemists. One of the oldest schemes of classification in chemistry was dividing chemical reactions into classes of decompositions (analyses), combinations (syntheses), substitutions (single replacements), and metatheses (double displacements). The invention of heat engines turned the attention of scientists to transitions between liquid water and its steam and led to the first quantitative relationship (today known as the Clapeyron equation) in 1834 (Clapeyron E, Puissance motrice de la chaleur. J l’École R Polytechnique Vingt-troisième cahier Tome XIV:153–190, 1834) describing the phase transformation and later to the foundation of thermodynamics as a new discipline of physics by William Thomson, later Lord Kelvin (An account of Carnot’s theory of the motive power of heat – with numerical results deduced from Regnault’s experiments on steam. Transactions of the Royal Society of Edinburgh, 16:541--574 (1849) and Clausius (Über die bewegende Kraft der Wärme und die Gesetze, welche sich daraus für die Wärmelehre selbst ableiten lassen. Pogg. Ann. (Annalen der Physik) 79:368–397, 500–524 (S. 372), 1850).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The condenser as a substantial part of steam engine was patented by Watt in 1769.

  2. 2.

    Degree of conversion in the case of homogeneous reactions.

  3. 3.

    See Chap. 3 in this book.

  4. 4.

    The name is taken from Mats Hillert’s book [31].

  5. 5.

    The name is taken from Hillert [31].

References

  1. Clapeyron E (1834) Puissance motrice de la chaleur. J l’École R Polytechnique Vingt-troisième cahier Tome XIV:153–190

    Google Scholar 

  2. Thomson W (1849) An account of Carnot’s theory of the motive power of heat – with numerical results deduced from Regnault’s experiments on steam. Transactions of the Royal Society of Edinburgh 16:541–574

    Google Scholar 

  3. Clausius R (1850) Über die bewegende Kraft der Wärme und die Gesetze, welche sich daraus für die Wärmelehre selbst ableiten lassen. Pogg Ann (Annalen der Physik) 79:368–397, 500–524 (S. 372)

    Google Scholar 

  4. Cagniard de la Tour C (1822) Exposé de quelques résultats obtenus par l’action combinée de la chaleur et de la compression sur certains liquides, tels que l’eau, l’alcool, l’éther sulfurique et l’es-sence de pétrole rectifiée. Ann Chim Phys 21(1822):127–132, 178–182

    Google Scholar 

  5. Andrews Thomas (1869) The Bakerian lecture: on the continuity of the gaseous and liquid states of matter. Philos Trans R Soc Lond 159:575–590

    Article  Google Scholar 

  6. van der Waals JD (1873) Over de Continuïteit van den Gas- en Vloeistoftoestand. Doctoral thesis, Leiden University. Reviewed by Maxwell JC (1874) van der Waals on the continuity of gaseous and liquid states. Nature (Lond) 10:477–480

    Google Scholar 

  7. Kipnis AY (2001) Early chemical thermodynamics: its duality embodied in van’t Hoff and Gibbs. In: Hornix WJ, Mannaerts SHWM (eds) van’t Hoff and the emergence of chemical thermodynamics. Delft University Press, Delft, pp 212–242; (a) Horstmann A (1869) Dampfspannung und Verdämfungswärme des Salmiaks. Berichte der deutschen chemischen Gesellschaft 2:137–140; (b) Horstmann A (1871) Zur Theorie der Dissociation. Ber 4:635–639; (c) Moutier J (1872) Sur la dissociation au point de vue de la thermodynamique. Comptes Rendus 72:759–762; (d) Guldberg CM (1872) Bidrag til Theorien for Dissociationen. Forhandlinger i Videnskabsselskabet i Christiania 14:136–143

    Google Scholar 

  8. Guldberg CM, Waage P (1864) Studier over affiniteten I. C. M. Forhandlinger i Videnskabs-Selskabet i Christiania, 35–45

    Google Scholar 

  9. Gibbs JW (1876–1878) On the equilibrium of heterogeneous substances. Transactions of the Connecticut Academy of Arts and Sciences 3:108–248 and 343–520. Reprinted (1948) in The collected works of J. Willard Gibbs, Vol. I, Yale University Press, New Haven, pp 55–353

    Google Scholar 

  10. Lewis GN (1907) Outlines of a new system of thermodynamic chemistry. Proc Am Acad 43:259; Z Phys Chem 61:129

    Google Scholar 

  11. Lewis GN (1908) Umriss eines neuen Systems der chemischen Thermodynamik. Z physikalische Chem 1908(61):129–165

    Google Scholar 

  12. Lewis GN, Randall M (1923) Thermodynamics and the free energy of chemical reactions. McGraw-Hill, New York

    Google Scholar 

  13. Šesták J (2005) Some historical aspects of thermal analysis. Termanal (2005) http://www.fzu.cz/~sestak/yyy/ictacHistory.pdf

  14. Bakhuis-Roozeboom HE (1900) Eisen und Stahl vom Standpunkte der Phasenlehre. Z Physikalische Chem 34:437–87

    Google Scholar 

  15. Bakhuis-Roozeboom HE (1901–1918) Die heterogenen Gleichgewichte vom Standpunkte der Phasenlehre, vol I (1901), vol II. Part 1 (1904), vol. II. Part 2 by Büchner EH (1918) vol II. Part 3. by Aten AHE (1918) vol III. Part 1 by Schreinemakers FAH (1911) and vol III. Part 2 by Schreinemakers FAH (1913) Braunschweig, 1901–18

    Google Scholar 

  16. Schreinemakers FAH (1915–1925) In-, mono-, and divariant equilibria, Koninkl. Akad. Wetenschappen te Amsterdam Proceedings, English edition: vol 18–28 (29 separate articles in the series); (a) Schreinemakers FAH (1912–1925) Papers by Schreinemakers FA, 1, 2., 579 p. Pennsylvania State University, Pennsylvania (1965)

    Google Scholar 

  17. Kamerlingh Onnes H (1911) The superconductivity of mercury. Communications from Physical Laboratory of the University of the Leiden, communications no. 122 and no. 124, 1911

    Google Scholar 

  18. Keesom,WH, de Haas,WJ (1932) Die Umwandlung flüssiges Helium I-Helium II unter Druck, 34. Verhandlingen der Koninklijke Akademie van Wetenschappen. Amsterdam, p 605; Communications from the Physical Laboratory of the University of Leiden, Communication No. 216b (1932)

    Google Scholar 

  19. Ehrenfest P (1933) Phasenumwandlungen im ueblichen und erweiterten Sinn, classifiziert nach dem entsprechen-den Singularitaeten des thermodynamischen Potentiales, 36. Verhandlingen der Koninklijke Akademie van Wetenschappen. Amsterdam, pp 153–157; Communications from the Physical Laboratory of the University of Leiden, Supplement No. 75b (1933)

    Google Scholar 

  20. Jaeger G (1998) The Ehrenfest classification of phase transitions: introduction and evolution. Arch Hist Exact Sci 53(1998):51–81

    Article  Google Scholar 

  21. l’Hospital G de (1696) L’analyse des infiniment petits pour l’intelligence des lignes courbes, Paris, L’Imprimerie Royale

    Google Scholar 

  22. Rutgers AJ (1934) Note on supraconductivity I. Physica 2:1055–1058

    Article  Google Scholar 

  23. The Great Soviet Encyclopedia, 3rd edn. (1970–1979) http://encyclopedia2.thefreedictionary.com/Second+order+phase+transition or http://slovari.yandex.ru/~книгиБСЭФазовыйпереход/

  24. Pippard AB (1957) Elements of classical thermodynamics. Cambridge University Press, Cambridge

    Google Scholar 

  25. Tisza L (1951) On the general theory of phase transitions. In: Smoluchowski R et al (eds) Phase transitions in solids (Symposium at Cornell University, August, 1948). Wiley, New York, pp 1–37; (a) Tisza L (1961) The thermodynamics of phase equilibrium. Ann Phys 13:1–92

    Google Scholar 

  26. Callen H (1960) Thermodynamics. Wiley, New York

    Google Scholar 

  27. Holba P (1994) Thermodynamics and ceramic systems. In: Koller A (ed) Structure and properties of ceramic materials. Elsevier, Amsterdam, pp 17–113

    Google Scholar 

  28. Holba P (1992) Thermodynamics of partially open systems. Czech J Phys B42(6):549–575

    Article  Google Scholar 

  29. Brown ME, Gallagher PK (eds) (2008) Handbook of thermal analysis and calorimetry, volume 5: Recent advances, techniques and applications. Elsevier, Amsterdam, pp 15–16

    Google Scholar 

  30. Holba P, Šesták J (1972) Kinetics with regard to the equilibrium of processes studied by non-isothermal techniques. Z Physikalische Chem NF 80(1/2):1–20

    Article  CAS  Google Scholar 

  31. Hillert Mats (1998) Phase equilibria, phase diagrams and phase transformation. Their thermodynamic basis. Cambridge University Press, Cambridge

    Google Scholar 

  32. Holba P (2009) New thermodynamic potentials and Clapeyron equations for condensed partly open systems. In: Šesták J (ed) Some thermodynamic, structural and behavioral aspects of solids accentuating amorphous materials. Publications of Westbohemian University, Plzeň

    Google Scholar 

  33. Holba P (2009) Částečně otevřené soustavy a termická analýza (Partly open systems and thermal analysis), L6. In: Proceedings of OSTA09, (Ostravian seminary on thermal analysis) Ostrava, 21–23 January 2009, ISBN 978-80-86238-63-0, http://katedry.osu.cz/kch/osta09/l6.pdf (In Czech)

  34. Legendre A-M (1794) Éléments de géométrie. Paris (12th edn: 1823)

    Google Scholar 

Download references

Acknowledgments

This work has been carried out by NTC ZCU Pilsen under the support of the CENTEM project, reg. no. CZ.1.05/2.1.00/03.0088, that is co-funded from the ERDF within the OP RDI program of the Ministry of Education, Youth and Sports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Holba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Holba, P. (2012). Equilibrium Background of Processes Initiated by Heating and Ehrenfest’s Classification of Phase Transitions. In: Šesták, J., Šimon, P. (eds) Thermal analysis of Micro, Nano- and Non-Crystalline Materials. Hot Topics in Thermal Analysis and Calorimetry, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3150-1_2

Download citation

Publish with us

Policies and ethics