Skip to main content

Regulation of Second Messenger Systems and Intracellular Pathways

  • Chapter
  • First Online:
Book cover A3 Adenosine Receptors from Cell Biology to Pharmacology and Therapeutics

Abstract

The A3 adenosine receptor is a G protein-coupled receptor linked to classical second messenger pathways such as those for cAMP production and phospholipase C. In addition, the receptor couples to mitogen-activated protein kinases (MAPK) and to the phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) pathway which could give it a role in cell growth, survival, death and differentiation. Interestingly, the A3 receptor has recently been linked to the hypoxia-inducible factor 1 (HIF-1), the main transcription factor regulating the cellular responses to hypoxia. The focus of this chapter centres on downstream mediators of A3 adenosine receptor signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbracchio MP, Brambilla R, Ceruti S, Kim HO, von Lubitz DK, Jacobson KA, Cattabeni F (1995) G protein-dependent activation of phospholipase C by adenosine A3 receptors in rat brain. Mol Pharmacol 48(6):1038–1045

    Google Scholar 

  • Ali H, Cunha-Melo JR, Saul WF, Beaven MA (1990) Activation of phospholipase C via adenosine receptors provides synergistic signals for secretion in antigen-stimulated RBL-2H3 cells. Evidence for a novel adenosine receptor. J Biol Chem 265(2):745–753

    PubMed  CAS  Google Scholar 

  • Baines CP, Pass JM, Ping P (2001) Protein kinases and kinase-modulated effectors in the late phase of ischemic preconditioning. Basic Res Cardiol 96(3):207–218

    Article  PubMed  CAS  Google Scholar 

  • Baharav E, Bar-Yehuda S, Madi L, Silberman D, Rath-Wolfson L, Halpren M, Ochaion A, Weinberger A, Fishman P (2005) Antiinflammatory effect of A3 adenosine receptor agonists in murine autoimmune arthritis models. J Rheumatol 32(3):469–476

    PubMed  CAS  Google Scholar 

  • Blay J, White TD, Hoskin DW (1997) The extracellular fluid of solid carcinomas contains immunosuppressive concentrations of adenosine. Cancer Res 57(13):2602–2605

    PubMed  CAS  Google Scholar 

  • Bar-Yehuda S, Stemmer SM, Madi L, Castel D, Ochaion A, Cohen S, Barer F, Zabutti A, Perez-Liz G, Del Valle L, Fishman P (2008) The A3 adenosine receptor agonist CF102 induces apoptosis of hepatocellular carcinoma via de-regulation of the Wnt and NF-kappaB signal transduction pathways. Int J Oncol 33(2):287–295

    PubMed  CAS  Google Scholar 

  • Carmeliet P, Dor Y, Herbert JM, Fukumura D, Brusselmans K, Dewerchin M, Neeman M, Bono F, Abramovitch R, Maxwell P, Koch CJ, Ratcliffe P, Moons L, Jain RK, Collen D, Keshert E (1998) Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394(6692):485–490

    Article  PubMed  CAS  Google Scholar 

  • Das S, Cordis GA, Maulik N, Das DK (2005a) Pharmacological preconditioning with resveratrol: role of CREB-dependent Bcl-2 signaling via adenosine A3 receptor activation. Am J Physiol 288(1):H328–H335

    CAS  Google Scholar 

  • Das S, Tosaki A, Bagchi D, Maulik N, Das DK (2005b) Resveratrol-mediated activation of cAMP response element-binding protein through adenosine A3 receptor by Akt-dependent and -independent pathways. J Pharmacol Exp Ther 314(2):762–769

    Article  PubMed  CAS  Google Scholar 

  • Englert M, Quitterer U, Klotz KN (2002) Effector coupling of stably transfected human A3 adenosine receptors in CHO cells. Biochem Pharmacol 64(1):61–65

    Article  PubMed  CAS  Google Scholar 

  • Fishman P, Madi L, Bar-Yehuda S, Barer F, Del Valle L, Khalili K (2002) Evidence for involvement of Wnt signaling pathway in IB-MECA mediated suppression of melanoma cells. Oncogene 21(25):4060–4064

    Article  PubMed  CAS  Google Scholar 

  • Fishman P, Bar-Yehuda S, Madi L, Rath-Wolfson L, Ochaion A, Cohen S, Baharav E (2006) The PI3K-NF-kappaB signal transduction pathway is involved in mediating the anti-inflammatory effect of IB-MECA in adjuvant-induced arthritis. Arthritis Res Ther 8(1):R33

    Article  PubMed  CAS  Google Scholar 

  • Fossetta J, Jackson J, Deno G, Fan X, Du XK, Bober L, Soude-Bermejo A, de Bouteiller O, Caux C, Lunn C, Lundell D, Palmer RK (2003) Pharmacological analysis of calcium responses mediated by the human A3 adenosine receptor in monocyte-derived dendritic cells and recombinant cells. Mol Pharmacol 63(2):342–350

    Article  PubMed  CAS  Google Scholar 

  • Frank M, Thumer L, Lohse MJ, Bunnemann M (2005)G protein activation without subunit dissociation depends on a Gαi-specific region. J Biol Chem 280(26):24584–24590

    Google Scholar 

  • Gao Z, Li BS, Day YJ, Linden J (2001) A3 adenosine receptor activation triggers phosphorylation of protein kinase B and protects rat basophilic leukemia 2H3 mast cells from apoptosis. Mol Pharmacol 59(1):76–82

    PubMed  CAS  Google Scholar 

  • Gales C, Van Durm JJ, Schaak S, Pontier S, Percherancier Y, Audet M, Paris H, Bouvier M (2006) Probing the activation-promoted structural rearrangements in preassembled receptor-G protein complexes. Nat Struct Mol Biol 13(9):778–786

    Article  PubMed  CAS  Google Scholar 

  • Germack R, Dickenson JM (2004) Characterization of ERK1/2 signalling pathways induced by adenosine receptor subtypes in newborn rat cardiomyocytes. Br J Pharmacol 141(2):329–339

    Article  PubMed  CAS  Google Scholar 

  • Germack R, Griffin M, Dickenson JM (2004) Activation of protein kinase B by adenosine A1 and A3 receptors in newborn rat cardiomyocytes. J Mol Cell Cardiol 37(5):989–999

    Article  PubMed  CAS  Google Scholar 

  • Germack R, Dickenson JM (2005) Adenosine triggers preconditioning through MEK/ERK1/2 signalling pathway during hypoxia/reoxygenation in neonatal rat cardiomyocytes. J Mol Cell Cardiol 39(3):429–442

    Article  PubMed  CAS  Google Scholar 

  • Gessi S, Varani K, Merighi S, Morelli A, Ferrari D, Leung E, Baraldi PG, Spalluto G, Borea PA (2001) Pharmacological and biochemical characterization of A3 adenosine receptors in Jurkat T cells. Br J Pharmacol 134(1):116–126

    Article  PubMed  CAS  Google Scholar 

  • Gessi S, Varani K, Merighi S, Cattabriga E, Iannotta V, Leung E, Baraldi PG, Borea PA (2002) A3 adenosine receptors in human neutrophils and promyelocytic HL60 cells: a pharmacological and biochemical study. Mol Pharmacol 61(2):415–424

    Article  PubMed  CAS  Google Scholar 

  • Giaccia A, Siim BG, Johnson RS (2003) HIF-1 as a target for drug development. Nat Rev Drug Discov 2(10):803–811

    Article  PubMed  CAS  Google Scholar 

  • Guan KL, Figueroa C, Brtva TR, Zhu T, Taylor J, Barber TD, Vojtek AB (2000) Negative regulation of the serine/threonine kinase B-Raf by Akt. J Biol Chem 275(35):27354–27359

    PubMed  CAS  Google Scholar 

  • Guinzberg R, Cortés D, Díaz-Cruz A, Riveros-Rosas H, Villalobos-Molina R, Piña E (2006) Inosine released after hypoxia activates hepatic glucose liberation through A3 adenosine receptors. Am J Physiol Endocrinol Metab 290(5):E940–E951

    Article  PubMed  CAS  Google Scholar 

  • Hammarberg C, Schulte G, Fredholm BB (2003) Evidence for functional adenosine A3 receptors in microglia cells. J Neurochem 86(4):1051–1054

    Article  PubMed  CAS  Google Scholar 

  • Hammarberg C, Fredholm BB, Schulte G (2004) Adenosine A3 receptor-mediated regulation of p38 and extracellular-regulated kinase ERK1/2 via phosphatidylinositol-3′-kinase. Biochem Pharmacol 67(1):129–134

    Article  PubMed  CAS  Google Scholar 

  • Hasko G, Nemeth ZH, Vizi ES, Salzman AL, Szabo C (1998) An agonist of adenosine A3 receptors decreases interleukin-12 and interferon-gamma production and prevents lethality in endotoxemic mice. Eur J Pharmacol 358(3):261–268

    Article  PubMed  CAS  Google Scholar 

  • Haskó G, Cronstein BN (2004) Adenosine: an endogenous regulator of innate immunity. Trends Immunol 25(1):33–39

    Article  PubMed  CAS  Google Scholar 

  • Hawes BE, Luttrell LM, Exum ST, Lefkowitz RJ (1994) Inhibition of G protein-coupled receptor signaling by expression of cytoplasmic domains of the receptor. J Biol Chem 269(22):15776–15785

    PubMed  CAS  Google Scholar 

  • Hepler JR, Kozasa T, Smrcka AV, Simon MI, Rhee SG, Sternweis PC, Gilman AG (1993) Purification from Sf9 cells and characterization of recombinant Gq alpha and G11 alpha. Activation of purified phospholipase C isozymes by G alpha subunits. J Biol Chem 268(19):14367–14375

    PubMed  CAS  Google Scholar 

  • Iredale PA, Hill SJ, Iredale PA, Hill SJ (1993) Increases in intracellular calcium via activation of an endogenous P2-purinoceptor in cultured CHO-K1 cells. Br J Pharmacol 110(4):1305–1310

    Google Scholar 

  • Kent JD, Sergeant S, Burns DJ, McPhail LC (1996) Identification and regulation of protein kinase C-δ in human neutrophils. J Immunol 157(10):4641–4647

    PubMed  CAS  Google Scholar 

  • Kung AL, Wang S, Klco JM, Kaelin WG, Livingston DM (2000) Suppression of tumor growth through disruption of hypoxia-inducible transcription. Nat Med 6(12):1335–1340

    Article  PubMed  CAS  Google Scholar 

  • La Sala A, Gadina M, Kelsall BL (2005) Gi-protein-dependent inhibition of IL-12 production is mediated by activation of the phosphatidylinositol 3-kinase-protein 3 kinase B/Akt pathway and JNK. J Immunol 175(5):2994–2999

    PubMed  Google Scholar 

  • Lee JE, Bokoch G, Liang BT (2001) A novel cardioprotective role of RhoA: new signaling mechanism for adenosine. FASEB J 15(11):1886–1894

    Article  PubMed  CAS  Google Scholar 

  • Lee JY, Jhun BS, Oh YT, Lee JH, Choe W, Baik HH, Ha J, Yoon KS, Kim SS, Kang I (2006) Activation of adenosine A3 receptor suppresses lipopolysaccharide-induced TNF-alpha production through inhibition of PI3-kinase/Akt and NF-kappaB activation in murine BV2 microglial cells. Neurosci Lett 396(1):1–6

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Ytrehus K, Downey JM (1994) Evidence that translocation of protein kinase C is a key event during ischemic preconditioning of rabbit myocardium. J Mol Cell Cardiol 26(5):661–668

    Article  PubMed  CAS  Google Scholar 

  • Luttrell LM (2008) Reviews in molecular biology and biotechnology: transmembrane signaling by G protein-coupled receptors. Mol Biotechnol 39(3):239–264

    Article  PubMed  CAS  Google Scholar 

  • Madi L, Cohen S, Ochayin A, Bar-Yehuda S, Barer F, Fishman P (2007) Overexpression of A3 adenosine receptor in peripheral blood mononuclear cells in rheumatoid arthritis: involvement of nuclear factor-kappaB in mediating receptor level. J Rheumatol 34(1):20–26

    PubMed  CAS  Google Scholar 

  • Martin L, Pingle SC, Hallam DM, Rybak LP, Ramkumar V (2006) Activation of the adenosine A3 receptor in RAW 264.7 cells inhibits lipopolysaccharide-stimulated tumor necrosis factor-alpha release by reducing calcium-dependent activation of nuclear factor-kappaB and extracellular signal-regulated kinase 1/2. J Pharmacol Exp Ther 316(1):71–78

    Google Scholar 

  • Matot I, Weiniger CF, Zeira E, Galun E, Joshi BV, Jacobson KA (2006) A3 adenosine receptors and mitogen-activated protein kinases in lung injury following in vivo reperfusion. Crit Care 10(2):R65

    Article  PubMed  Google Scholar 

  • Merighi S, Varani K, Gessi S, Cattabriga E, Iannotta V, Ulouglu C, Leung E, Borea PA (2001) Pharmacological and biochemical characterization of adenosine receptors in the human malignant melanoma A375 cell line. Br J Pharmacol 134(6):1215–1226

    Article  PubMed  CAS  Google Scholar 

  • Merighi S, Mirandola P, Milani D, Varani K, Gessi S, Klotz KN, Leung E, Baraldi PG, Borea PA (2002) Adenosine receptors as mediators of both cell proliferation and cell death of cultured human melanoma cells. J Invest Dermatol 119(4):923–933

    Article  PubMed  CAS  Google Scholar 

  • Merighi S, Mirandola P, Varani K, Gessi S, Leung E, Baraldi PG, Tabrizi MA, Borea PA (2003) A glance at adenosine receptors: novel target for antitumor therapy. Pharmacol Ther 100(1):31–48

    Article  PubMed  CAS  Google Scholar 

  • Merighi S, Benini A, Mirandola P, Gessi S, Varani K, Leung E, Maclennan S, Borea PA (2005a) A3 adenosine receptor activation inhibits cell proliferation via phosphatidylinositol 3-kinase (PI3K)/AKT-dependent inhibition of the extracellular signal-regulated kinase (ERK)1/2 phosphorylation in A375 human melanoma cells. J Biol Chem 280(20):19516–19526

    Article  PubMed  CAS  Google Scholar 

  • Merighi S, Benini A, Mirandola P, Gessi S, Varani K, Leung E, MacLennan S, Baraldi PG, Borea PA (2005b) A3 adenosine receptors modulate hypoxia-inducible factor-1alpha expression in human A375 melanoma cells. Neoplasia 7(10):894–903

    Article  PubMed  CAS  Google Scholar 

  • Merighi S, Benini A, Mirandola P, Gessi S, Varani K, Leung E, Maclennan S, Borea PA (2006) Adenosine modulates vascular endothelial growth factor expression via hypoxia-inducible factor-1 in human glioblastoma cells. Biochem Pharmacol 72(1):19–31

    Article  PubMed  CAS  Google Scholar 

  • Merighi S, Benini A, Mirandola P, Gessi S, Varani K, Simioni C, Leung E, Maclennan S, Baraldi PG, Borea PA (2007a) Caffeine inhibits adenosine-induced accumulation of hypoxia-inducible factor-1alpha, vascular endothelial growth factor, and interleukin-8 expression in hypoxic human colon cancer cells. Mol Pharmacol 72(2):395–406

    Article  PubMed  CAS  Google Scholar 

  • Merighi S, Benini A, Mirandola P, Gessi S, Varani K, Leung E, Maclennan S, Baraldi PG, Borea PA (2007b) Hypoxia inhibits paclitaxel-induced apoptosis through adenosine-mediated phosphorylation of Bad in glioblastoma cells. Mol Pharmacol 72(1):162–172

    Article  PubMed  CAS  Google Scholar 

  • Michel MC, Li Y, Heushch G (2001) Mitogen-activated protein kinases in the heart. Naunyn Schmiedebergs Arch Pharmacol 363(3):245–266

    Article  PubMed  CAS  Google Scholar 

  • Milligan G, Kostenis E (2006) Heterotrimeric G-proteins: a short history. Br J Pharmacol 147(1):S46–S55

    Google Scholar 

  • Miyata Y, Nishida E (1999) Distantly related cousins of MAP kinase: biochemical properties and possible physiological functions. Biochem Biophys Res Commun 266(2):291–295

    Article  PubMed  CAS  Google Scholar 

  • Moelling K, Schad K, Bosse M, Zimmermann S, Schweneker M (2002) Regulation of Raf-Akt cross-talk. J Biol Chem 277(34):31099–31106

    Article  PubMed  CAS  Google Scholar 

  • Mozzicato S, Joshi BV, Jacobson KA, Liang BT (2004) Role of direct RhoA-phospholipase D1 interaction in mediating adenosine-induced protection from cardiac ischemia. FASEB J 18(2):406–408

    PubMed  CAS  Google Scholar 

  • Neary JT, McCarthy M, Kang Y, Zuniga S (1998) Mitogenic signaling from P1 and P2 purinergic receptors to mitogen-activated protein kinase in human fetal astrocyte cultures. Neurosci Lett 242(3):159–162

    Article  PubMed  CAS  Google Scholar 

  • Ochaion A, Bar-Yehuda S, Cohen S, Amital H, Jacobson KA, Joshi BV, Gao ZG, Barer F, Patoka R, Del Valle L, Perez-Liz G, Fishman P (2008) The A3 adenosine receptor agonist CF502 inhibits the PI3K, PKB/Akt and NF-kappaB signaling pathway in synoviocytes from rheumatoid arthritis patients and in adjuvant-induced arthritis rats. Biochem Pharmacol 76(4):482–494

    Article  PubMed  CAS  Google Scholar 

  • Palmer TM, Gettys TW, Stiles GL (1995) Differential interaction with and regulation of multiple G-proteins by the rat A3 adenosine receptor. J Biol Chem 270(28):16895–16902

    Article  PubMed  CAS  Google Scholar 

  • Ramkumar V, Stiles GL, Beaven MA, Ali H (1993) The A3 adenosine receptor is the unique adenosine receptor which facilitates release of allergic mediators in mast cells. J Biol Chem 268(23):16887–16890

    PubMed  CAS  Google Scholar 

  • Ratcliffe PJ, Pugh CW, Maxwell PH (2000) Targeting tumors through the HIF system. Nat Med 6(12):1315–1316

    Article  PubMed  CAS  Google Scholar 

  • Reiter E, Lefkowitz RJ (2006) GRKs and β arrestins roles in receptor silencing, trafficking and signaling. Trends Endocrinol Metab 17(4):159–165

    Article  PubMed  CAS  Google Scholar 

  • Reusch HP, Zimmermann S, Schaefer M, Paul M, Moelling K (2001) Regulation of Raf by Akt controls growth and differentiation in vascular smooth muscle cells. J Biol Chem 276(36):33630–33637

    Article  PubMed  CAS  Google Scholar 

  • Rommel C, Clarke BA, Zimmermann S, Nunez L, Rossman R, Reid K, Moelling K, Yancopoulos GD, Glass DJ (1999) Differentiation stage-specific inhibition of the Raf-MEK-ERK pathway by Akt. Science 286(5445):1738–1741

    Article  PubMed  CAS  Google Scholar 

  • Schulte G, Fredholm BB (2000) Human adenosine A1, A2A, A2B, and A3 receptors expressed in Chinese hamster ovary cells all mediate the phosphorylation of extracellular-regulated kinase 1/2. Mol Pharmacol 58(3):477–482

    PubMed  CAS  Google Scholar 

  • Schulte G, Fredholm BB (2002a) Diverse inhibitors of intracellular signalling act as adenosine receptor antagonists. Cell Signal 14(2):109–113

    Article  PubMed  CAS  Google Scholar 

  • Schulte G, Fredholm BB (2002b) Signaling pathway from the human adenosine A3 receptor expressed in Chinese hamster ovary cells to the extracellular signal-regulated kinase 1/2. Mol Pharmacol 62(5):1137–1146

    Article  PubMed  CAS  Google Scholar 

  • Schulte G, Fredholm BB (2003) Signalling from adenosine receptors to mitogen-activated protein kinases. Cell Signal 15(9):813–827

    Article  PubMed  CAS  Google Scholar 

  • Sebolt-Leopold JS, Herrera R (2004) Targeting the mitogen-activated protein kinase cascade to treat cancer. Nat Rev Cancer 4(12):937–947

    Article  PubMed  CAS  Google Scholar 

  • Semenza GL (2003) Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3(10):721–732

    Article  PubMed  CAS  Google Scholar 

  • Shneyvays V, Zinman T, Shainberg A (2004) Analysis of calcium responses mediated by the A3 adenosine receptor in cultured newborn rat cardiac myocytes. Cell Calcium 36(5):387–396

    Article  PubMed  CAS  Google Scholar 

  • Shneyvays V, Leshem D, Zinman T, Mamedova LK, Jacobson KA, Shainberg A (2005) Role of adenosine A1 and A3 receptors in regulation of cardiomyocyte homeostasis after mitochondrial respiratory chain injury. Am J Physiol Heart Circ Physiol 288(6):H2792–H2801

    Article  PubMed  CAS  Google Scholar 

  • Tracey WR, Magee W, Masamune H, Oleynek JJ, Hill RJ (1998) Selective activation of adenosine A3 receptors with N6-(3-chlorobenzyl)-5’-N-methylcarboxamidoadenosine (Cl-IB-MECA) provides cardioprotection via KATP channel activation. Cardiovasc Res 40(1):138–145

    Article  PubMed  CAS  Google Scholar 

  • Trincavelli ML, Tuscano D, Marroni M, Klotz KN, Lucacchini A, Martini C (2002) Involvement of mitogen protein kinase cascade in agonist-mediated human A3 adenosine receptor regulation. Biochim Biophys Acta 1591(1–3):55–62

    PubMed  CAS  Google Scholar 

  • Varani K, Merighi S, Gessi S, Klotz KN, Leung E, Baraldi PG, Cacciari B, Romagnoli R, Spalluto G, Borea PA (2000) [3H]MRE 3008F20: a novel antagonist radioligand for the pharmacological and biochemical characterization of human A3 adenosine receptors. Mol Pharmacol 57(5):968–975

    PubMed  CAS  Google Scholar 

  • Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2(7):489–501

    Article  PubMed  CAS  Google Scholar 

  • Wan TC, Ge ZD, Tampo A, Mio Y, Bienengraeber MW, Tracey WR, Gross GJ, Kwok WM, Auchampach JA (2008) The A3 adenosine receptor agonist CP-532, 903 [N6-(2, 5-dichlorobenzyl)-3′-aminoadenosine-5′-N-methylcarboxamide] protects against myocardial ischemia/reperfusion injury via the sarcolemmal ATP-sensitive potassium channel. J Pharmacol Exp Ther 324(1):234–243

    Article  PubMed  CAS  Google Scholar 

  • Zhao TC, Kukreja RC (2002) Late preconditioning elicited by activation of adenosine A3 receptor in heart: role of NF- kappa B, iNOS and mitochondrial KATP channel. J Mol Cell Cardiol 34(3):263–277

    Article  PubMed  CAS  Google Scholar 

  • Zhao TC, Kukreja RC (2003) Protein kinase C-delta mediates adenosine A3 receptor-induced delayed cardioprotection in mouse. Am J Physiol Heart Circ Physiol 285:H434–H441

    PubMed  CAS  Google Scholar 

  • Zheng J, Wang R, Zambraski E, Wu D, Jacobson KA, Liang BT (2007) Protective roles of adenosine A1, A2A, and A3 receptors in skeletal muscle ischemia and reperfusion injury. Am J Physiol Heart Circ Physiol 293(6):H3685–H3691

    Article  PubMed  CAS  Google Scholar 

  • Zhou QY, Li C, Olah ME, Johnson RA, Stiles GL, Civelli O (1992) Molecular cloning and characterization of an adenosine receptor: the A3 adenosine receptor. Proc Natil Acad Sci U S A 89(16):7432–7436

    Article  CAS  Google Scholar 

  • Zimmermann S, Moelling K (1999) Phosphorylation and regulation of Raf by Akt (protein kinase B). Science 286(5445):1741–1744

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Merighi, S., Simioni, C., Lane, R., Ijzerman, A.P. (2010). Regulation of Second Messenger Systems and Intracellular Pathways. In: Borea, P. (eds) A3 Adenosine Receptors from Cell Biology to Pharmacology and Therapeutics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3144-0_4

Download citation

Publish with us

Policies and ethics