Skip to main content

A3 Adenosine Receptor Regulation of Cells of the Immune System and Modulation of Inflammation

  • Chapter
  • First Online:

Abstract

The interest in the elucidation of A3 adenosine receptor involvement in inflammation is evident from the large amount of experimental work carried out in peripheral blood cells of the immune system and in a variety of inflammatory conditions. Following a detailed analysis of the literature the A3 adenosine receptor subtype appears to play a complex role as both pro and anti-inflammatory effects have been demonstrated depending not only on the cell types investigated but also on the model of inflammation used and the species considered. This chapter will discuss developments in our understanding of the role of adenosine A3 receptor activation in the function of the different types of cells of the immune system including neutrophils, eosinophils, lymphocytes, monocytes, macrophages and dendritic cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Baharav E, Bar-Yehuda S, Madi L, Silberman D, Rath-Wolfson L, Halpren M, Ochaion A, Weinberger A, Fishman P (2005) Antiinflammatory effect of A3 adenosine receptor agonists in murine autoimmune arthritis models. J Rheumatol 32(3):469–476

    CAS  PubMed  Google Scholar 

  • Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392(6673):245–252

    Article  CAS  PubMed  Google Scholar 

  • Baraldi PG, Tabrizi MA, Gessi S, Borea PA (2008) Adenosine receptor antagonists: translating medicinal chemistry and pharmacology into clinical utility. Chem Rev 108(1):238–263

    Article  CAS  PubMed  Google Scholar 

  • Bar-Yehuda S, Madi L, Barak D, Mittelman M, Ardon E, Ochaion A, Cohn S, Fishman P (2002) Agonists to the A3 adenosine receptor induce G-CSF production via NF-kB activation: a new class of nyeloprotective agents. Exp Hematol 30(12):1390–1398

    Article  CAS  PubMed  Google Scholar 

  • Blay J, White TD, Hoskin DW (1997) The extracellular fluid of solid carcinomas contains immunosuppressive concentrations of adenosine. Cancer Res 57(13):2602–2605

    CAS  PubMed  Google Scholar 

  • Bouma MG, Jeuhomme TMMA, Boyle DL, Dentener MA, Voitenok NN, van den Wildenberg FAJM, Buurman WA (1997) Adenosine inhibits neutrophil degranulation in activated human whole blood. J Immunol 158(11):5400–5408

    CAS  PubMed  Google Scholar 

  • Broussas M, Cornillet-Lefèbvre P, Potron G, Nguyen P (1999) Inhibition of fMLP-triggered respiratory burst of human monocytes by adenosine: involvement of A3 adenosine receptor. J Leukoc Biol 66(3):495–501

    CAS  PubMed  Google Scholar 

  • Broussas M, Cornillet-Lefèbvre P, Potron G, Nguyên P (2002) Adenosine inhibits tissue factor expression by LPS-stimulated human monocytes: involvement of the A3 adenosine receptor. Thromb Haemost 88(1):123–130

    CAS  PubMed  Google Scholar 

  • Butler JJ, Mader JS, Watson CL, Zhang H, Blay J, Hoskin DW (2003) Adenosine inhibits activation-induced T cell expression of CD2 and CD28 co-stimulatory molecules: role of interleukin-2 and cyclic AMP signaling pathways. J Cell Biochem 89(5):975–991

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Corriden R, Inoue Y, Yip L, Hashiguchi N, Zinkernagel A, Nizet V, Insel PA, Junger WG (2006a) ATP release guides neutrophil chemotaxis via P2Y2 and A3 receptors. Science 314(5806):1792–1795

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Hashiguchi N, Yip L, Junger WG (2006b) Hypertonic saline enhances neutrophil elastase release through activation of P2 and A3 receptors. Am J Physiol Cell Physiol 290(4):C1051–C1059

    Google Scholar 

  • Dickenson JM, Reeder S, Rees B, Alexander S, Kendall D (2003) Functional expression of adenosine A2A and A3 receptors in the mouse dendritic cell line XS-106. Eur J Pharmacol 474(1):43–51

    Article  CAS  PubMed  Google Scholar 

  • Douglas SD (1999) Monocytes/macrophages in diagnosis and immunopathogenesis. Clin Diagn Lab Immunol 6(3):283–285

    CAS  PubMed  Google Scholar 

  • Ezeamuzie CI, Philips E (1999) Adenosine A3 receptors on human eosinophils mediate inhibition of degranulation and superoxide anion release. Br J Pharmacol 127(1):188–194

    Article  CAS  PubMed  Google Scholar 

  • Ezeamuzie CI, Philips E (2003) Positive coupling of atypical adenosine A3 receptors on human eosinophils to adenylyl cyclase. Biochem Biophys Res Commun 300(3):712–718

    Article  CAS  PubMed  Google Scholar 

  • Fishman P, Bar-Yehuda S, Farbstein T, Barer F, Ohana G (2000) Adenosine acts as a chemoprotective agent by stimulating G-CSF production: a role for A1 and A3 adenosine receptors. J Cell Physiol 183(3):393–398

    Google Scholar 

  • Fishman P, Bar-Yehuda S, Madi L, Rath-Wolfson L, Ochaion A, Cohen S, Baharav E (2006) The PI3K-NF-kappaB signal transduction pathway is involved in mediating the anti-inflammatory effect of IB-MECA in adjuvant-induced arthritis. Arthritis Res Ther 8(1):R33

    Article  PubMed  Google Scholar 

  • Fleming KM, Mogul DJ (1997) Adenosine A3 receptors potentiate hippocampal calcium current by a PKA-dependent/PKC-independent pathway. Neuropharmacology 36(3):353–362

    Article  CAS  PubMed  Google Scholar 

  • Fossetta J, Jackson J, Deno G, Fan X, Du KK, Bober L, Soude-Bermejo A, de Bouteiller O, Caux C, Lunn C, Lundell D, Palmer RK (2003) Pharmacological analysis of calcium responses mediated by the human A3 adenosine receptor in monocyte-derived dendritic cells and recombinant cells. Mol Pharmacol 63(2):342–350

    Article  CAS  PubMed  Google Scholar 

  • Fredholm B, IJzerman A, Jacobson K, Klotz K-N, Linden J (2001) International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53(4):527–552

    CAS  PubMed  Google Scholar 

  • Gao Z, Li BS, Day YJ, Linden J (2001) A3 adenosine receptor activation triggers phosphorylation of protein kinase B and protects rat basophilic leukemia 2H3 mast cells from apoptosis. Mol Pharmacol 59(1):76–82

    CAS  PubMed  Google Scholar 

  • Gessi S, Varani K, Merighi S, Morelli A, Ferrari D, Leung E, Baraldi PG, Spalluto G, Borea PA (2001) Pharmacological and biochemical characterization of A3 adenosine receptors in Jurkat T cells. Br J Pharmacol 134(1):116–126

    Article  CAS  PubMed  Google Scholar 

  • Gessi S, Varani K, Merighi S, Cattabriga E, Iannotta V, Leung E, Baraldi PG, Borea PA (2002) A3 adenosine receptors in human neutrophils and promyelocytic HL60 cells: a pharmacological and biochemical study. Mol Pharmacol 61(2):415–424

    Article  CAS  PubMed  Google Scholar 

  • Gessi S, Cattabriga E, Avitabile A, Gafa’ R, Lanza G, Cavazzini L, Bianchi N, Gambari R, Feo C, Liboni A, Gullini S, Leung E, Mac-Lennan S, Borea PA (2004a) Elevated expression of A3 adenosine receptors in human colorectal cancer is reflected in peripheral blood cells. Clin Cancer Res 10(17):5895–5901

    Article  CAS  PubMed  Google Scholar 

  • Gessi S, Varani K, Merighi S, Cattabriga E, Avitabile A, Gavioli R, Fortini C, Leung E, Mac Lennan S, Borea PA (2004b) Expression of A3 adenosine receptors in human lymphocytes: up-regulation in T cell activation. Mol Pharmacol 65(3):711–719

    Article  CAS  PubMed  Google Scholar 

  • Gessi S, Merighi S, Varani K, Leung E, Mac Lennan S, Borea PA (2008) The A3 adenosine receptor: an enigmatic player in cell biology. Pharmacol Ther 117(1):123–140

    Article  CAS  PubMed  Google Scholar 

  • Gleich G, Adolphson C (1986) The eosinophilic leukocyte: structure and function. Adv Immunol 39:177–253

    Article  CAS  PubMed  Google Scholar 

  • Harish A, Hohana G, Fishman P, Arnon O, Bar-Yehuda S (2003) A3 adenosine receptor agonist potentiates natural killer cell activity. Int J Oncol 23(4):1245–1249

    CAS  PubMed  Google Scholar 

  • Hart DN (1997) Dendritic cells: unique leukocyte populations which control the primary immune response. Blood 90(9):3245–3287

    CAS  PubMed  Google Scholar 

  • Haskó G, Pacher P, Deitch EA, Vizi ES (2007) Shaping of monocyte and macrophage function by adenosine receptors. Pharmacol Ther 113(2):264–275

    Article  PubMed  Google Scholar 

  • van der Hoeven D, Wan TC, Auchampach JA (2008) Activation of the A3 adenosine receptor suppresses superoxide production and chemotaxis of mouse bone marrow neutrophils. Mol Pharmacol 74(3):685–696

    Article  PubMed  Google Scholar 

  • Holgate ST (1999) The epidemic of allergy and asthma. Nature 402(Suppl 6760):B2–B4

    Article  CAS  PubMed  Google Scholar 

  • Hoskin DW, Reynolds T, Blay J (1994a) Colon adenocarcinoma cells inhibit anti-CD3-activated killer cell induction. Cancer Immunol Immunother: CII 38(3):201–207

    CAS  PubMed  Google Scholar 

  • Hoskin DW, Reynolds T, Blay J (1994b) Adenosine as a possible inhibitor of killer T-cell activation in the microenvironment of solid tumours. Int J Cancer 59(6):854–855

    Article  CAS  PubMed  Google Scholar 

  • Hoskin DW, Reynolds T, Blay J (1994c) 2-Chloroadenosine inhibits the MHC-unrestricted cytolytic activity of anti-CD3-activated killer cells: evidence for the involvement of a non-A1/A2 cell-surface adenosine receptor. Cell Immunol 159(1):85–93

    Article  CAS  PubMed  Google Scholar 

  • Hoskin DW, Buttler JJ, Drapeau D, Haeryfar SM, Blay J (2002) Adenosine acts through an A3 receptor to prevent the induction of murine anti-CD3-activated killer T cells. Int J Cancer 99(3):386–395

    Article  CAS  PubMed  Google Scholar 

  • Hoskin DW, Mader JS, Furlong SJ, Conrad DM, Blay J (2008) Inhibition of T cell and natural killer cell function by adenosine and its contribution to immune evasion by tumor cells (review). Int J Oncol 32(3):527–535

    CAS  PubMed  Google Scholar 

  • Inoue Y, Chen Y, Pauzenberger R, Hirsh MI, Junger WG (2008a) Hypertonic saline up-regulates A3 adenosine receptor expression of activated neutrophils and increases acute lung injury after sepsis. Crit Care Med 36(9):2569–2575

    Article  CAS  PubMed  Google Scholar 

  • Inoue Y, Chen Y, Hirsh MI, Yip L, Junger WG (2008b) A3 and P2Y2 receptors control the recruitment of neutrophils to the lungs in a mouse model of sepsis. Shock 30(2):173–177

    PubMed  Google Scholar 

  • Jacobson KA (1998) Adenosine A3 receptors: novel ligands and paradoxical effects. Trends Pharmacol Sci 19(5):184–191

    Article  CAS  PubMed  Google Scholar 

  • Jordan JE, Thourani VH, Auchampach JA, Robinson JA, Wang N-P, Vinten-Johansen J (1999) A3 adenosine receptor activation attenuates neutrophil function and neutrophil-mediated reperfusion injury. Am J Physiol 277(5 Pt 2):H1895–H1905

    CAS  PubMed  Google Scholar 

  • Junger WG (2008) Purinergic regulation of neutrophil chemotaxis. Cell Mol Life Sci 65(16):2528–2540

    Article  CAS  PubMed  Google Scholar 

  • Kohno Y, Ji X, Mawhorter SD, Koshiba M, Jacobson KA (1996a) Activation of A3 adenosine receptors on human eosinophils elevates intracellular calcium. Blood 88(9):3569

    CAS  PubMed  Google Scholar 

  • Kohno Y, Sei Y, Koshiba M, Kim HO, Jacobson KA (1996b) Induction of apoptosis in HL-60 human promyelocytic leukemia cells by adenosine A3 receptor agonists. Biochem Biophys Res Commun 219(3):904–910

    Article  CAS  PubMed  Google Scholar 

  • Knight D, Zheng X, Rocchini C, Jacobson M, Bai T, Walker B (1997) Adenosine A3 receptor stimulation inhibits migration of human eosinophils. J Leukoc Biol 62(4):465–468

    CAS  PubMed  Google Scholar 

  • Kreckler LM, Wan TC, Ge Z-D, Auchampach JA (2006) Adenosine inhibits tumor necrosis factor-α release from mouse peritoneal macrophages via A2A and A2B but not the A3 adenosine receptor. J Pharmacol Exp Ther 317(1):172–180

    Article  CAS  PubMed  Google Scholar 

  • Lee JY, Jhun BS, Oh YT, Lee JH, Choe W, Baik HH, Ha J, Yoon K-S, Kim SS, Kang I (2006) Activation of adenosine A3 receptor suppresses lipopolysaccaride-induced TNF-α production through inhibition of PI-3-kinase/Akt and NF-kB activation in murine BV2 microglial cells. Neurosci Lett 396(1):1–6

    Article  CAS  PubMed  Google Scholar 

  • Le Vraux V, Chen Y, Masson I, DeSousa M, Giroud J, Florentin I, Chauvelot-Moachon (1993) Inhibition of human monocyte TNF production by adenosine receptor agonists. Life Sci 52(24):1971–1924

    Google Scholar 

  • Linden J (2006) Purinergic chemotaxis. Science 314(5806):1689–1690

    Article  CAS  PubMed  Google Scholar 

  • Lukashev DE, Smith PT, Caldwell CC, Ohta A, Apasov SG, Sitkovsky MV (2003) Analysis of A2A receptor-deficient mice reveals no significant compensatory increases in the expression of A2B, A1 and A3 adenosine receptors in lymphoid organs. Biochem Pharmacol 65(12):2081–2090

    Article  CAS  PubMed  Google Scholar 

  • Lukashev D, Ohta A, Sitkovsky M (2007) Hypoxia-dependent anti-inflammatory pathways in protection of cancerous tissues. Cancer Metastasis Rev 26(2):273–279

    Article  CAS  PubMed  Google Scholar 

  • MacKenzie WM, Hoskin DW, Blay J (1994) Adenosine inhibits the adhesion of anti-CD3-activated killer lymphocytes to adenocarcinoma cells through an A3 receptor. Cancer Res 54(13):3521–3526

    CAS  PubMed  Google Scholar 

  • MacKenzie WM, Hoskin DW, Blay J (2002) Adenosine suppresses α4β7 integrin-mediated adhesion of T lymphocytes to colon adenocarcinoma cells. Exp Cell Res 276(1):90–100

    Article  CAS  PubMed  Google Scholar 

  • Madi L, Cohen S, Ochaion A, Bar-Yehuda S, Barer F, Fishman P (2007) Overexpression of A3 adenosine receptor in peripheral blood mononuclear cells in rheumatoid arthritis: involvement of nuclear factor-kappaB in mediating receptor level. J Rheumatol 34(1):20–26

    CAS  PubMed  Google Scholar 

  • Martin L, Pingle SC, Hallam DM, Rybak LP, Ramkumar V (2006) Activation of the adenosine A3 receptor in RAW 264.7 cells inhibits lipopolysaccharide-stimulated tumor necrosis factor-α release by reducing calcium-dependent activation of nuclear factor-kB and extracellular signal-regulated kinase 1/2. J Pharmacol Exp Ther 316(1):71–78

    Google Scholar 

  • McWhinney CD, Dudley MW, Bowlin TL, Peet NP, Schook L, Bradshaw M, De M, Borcheerding DR, Edwards CK (1996) Activation of adenosine A3 receptors on macrophages inhibits tumor necrosis factor-α. Eur J Pharmacol 310(2–3):209–216

    Article  CAS  PubMed  Google Scholar 

  • Merighi S, Varani K, Gessi S, Cattabriga E, Iannotta V, Ulouglu C, Leung E, Borea PA (2001) Pharmacological and biochemical characterization of adenosine receptors in the human malignant melanoma A375 cell line. Br J Pharmacol 134(6):1215–1226

    Article  CAS  PubMed  Google Scholar 

  • Merighi S, Mirandola P, Varani K, Gessi S, Leung E, Baraldi PG, Tabrizi MA, Borea PA (2003) A glance at adenosine receptors: novel target for antitumor therapy. Pharmacol Ther 100(1):31–48

    Article  CAS  PubMed  Google Scholar 

  • Morschl E, Molina JG, Volmer JB, Mohsenin A, Pero RS, Hong JS, Kheradmand F, Lee JJ, Blackburn MR (2008) A3 adenosine receptor signaling influences pulmonary inflammation and fibrosis. Am J Respir Cell Mol Biol 39(6):697–705

    Article  PubMed  Google Scholar 

  • Ohta A, Sitkovsky M (2001) Role of G-protein.coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature 414(6866):916–920

    Google Scholar 

  • Ohta A, Gorelik E, Prasad SJ, Ronchese F, Lukashev D, Wong MK, Huang X, Caldwell S, Liu K, Smith P, Chen JF, Jackson EK, Apasov S, Abrams S, Sitkovsky M (2006) A2A adenosine receptor protects tumors from antitumor T cells. Proc Natl Acad Sci U S A 103(35):13132–13137

    Article  CAS  PubMed  Google Scholar 

  • Panther E, Idzko M, Herouy Y, Rheinen H, Gebicke-Haerter PJ, Mrowietz U, Dichmann S, Norgauer J (2001) Expression and function of adenosine receptors in human dendritic cells. FASEB J 15(11):1963–1970

    Article  CAS  PubMed  Google Scholar 

  • Pearlman DS (1999) Pathophysiology of the inflammatory response. J Allergy Clin Immunol 104(4 Pt 1):S132–S137

    Article  CAS  PubMed  Google Scholar 

  • Raskovalova T, Huang X, Sitkovsky M, Zacharia LC, Jackson EK, Gorelik E (2005) Gs protein-coupled adenosine receptor signaling and lytic function of activated NK cells. J Immunol 175(7):4383–4391

    CAS  PubMed  Google Scholar 

  • Reeves JJ, Harris CA, Hayes BP, Butchers PR, Sheehan MJ (2000) Studies on the effects of adenosine A3 receptor stimulation on human eosinophils isolated from non-asthmatic or asthmatic donors. Inflamm Res 49(12):666–672

    Article  CAS  PubMed  Google Scholar 

  • Reshkin SJ, Guerra L, Bagorda A, Debellis L, Cardone R, Li AH, Jacobson KA, Casavola V (2000) Activation of A3 adenosine receptor induces calcium entry and chloride secretion in A6 cells. J Membr Biol 178(2):103–113

    Article  CAS  PubMed  Google Scholar 

  • Sajjadi FG, Takabayashi K, Foster AC, Domingo RC, Firestein GS (1996) Inhibition of TNF-α expression by adenosine. Role of A3 receptors. J Immunol 156(9):3435–3442

    Google Scholar 

  • Salvatore CA, Tilley SL, Latour AM, Fletcher DS, Koller BH, Jacobson MA (2000) Disruption of the A3 adenosine receptor gene in mice and its effect on stimulated inflammatory cells. J Biol Chem 275(6):4429–4434

    Article  CAS  PubMed  Google Scholar 

  • Shneyvays V, Jacobson KA, Li AH, Nawrath H, Zinman T, Isaac A, Shainberg A (2000) Induction of apoptosis in rat cardiocytes by A3 adenosine receptor activation and its suppression by isoproterenol. Exp Cell Res 257(1):111–126

    Article  CAS  PubMed  Google Scholar 

  • Sitkovsky MV, Kjaergaard J, Lukashev D, Ohta A (2008a) Hypoxia-adenosinergic immunosuppression: tumor protection by T regulatory cells and cancerous tissue hypoxia. Clin Cancer Res 14(19):5947–5952

    Article  CAS  PubMed  Google Scholar 

  • Sitkovsky M, Lukashev D, Deaglio S, Dwyer K, Robson SC, Ohta A (2008b) Adenosine A2A receptor antagonists: blockade of adenosinergic effects and T regulatory cells. Br J Pharmacol 153(Suppl 1):S457–S464

    CAS  PubMed  Google Scholar 

  • Steinman RM (1991) The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 9:271–296

    Article  CAS  PubMed  Google Scholar 

  • Suh BC, Kim TD, Lee JU, Seong JK, Kim KT (2001) Pharmacological characterization of adenosine receptors in PGT-beta mouse pineal gland tumour cells. Br J Pharmacol 134(1):132–142

    Article  CAS  PubMed  Google Scholar 

  • Sullivan P, Bekir S, Jaffar Z, Page C, Jeffery P, Costello J (1994) Anti-inflammatory effects of low-dose oral theophylline in atopic asthma. Lancet 343(8904):1006–1008

    Article  CAS  PubMed  Google Scholar 

  • Szabo C, Scott GS, Virag L, Egnaczyk G, Salzman AL, Shanley TP, Haskó G (1998) Suppression of macrophage inflammatory protein (MIP)-1a production and collagen-induced arthritis by adenosine receptor agonists. Br J Pharmacol 125(2):379–387

    Article  CAS  PubMed  Google Scholar 

  • Walker BAM, Jacobson MA, Knight DA, Salvatore CA, Weir T, Zhou D, Bai TR (1997) Adenosine A3 receptor expression and function in eosinophils. Am J Respir Cell Mol Biol 16(5):531–537

    CAS  PubMed  Google Scholar 

  • Young HWJ, Molina JG, Dimina D, Zhong H, Jacobson M, Chan L-NL, Chan T-S, Lee JJ, Blackburn MR (2004) A3 adenosine receptor signalling contributes to airway inflammation and mucus production in adenosine deaminase-deficient mice. J Immunol 173(2):1380–1389

    CAS  PubMed  Google Scholar 

  • Varani K, Gessi S, Merighi S, Iannotta V, Cattabriga E, Spisani S, Cadossi R, Borea PA (2002) Effect of low frequency electromagnetic fields on A2A adenosine receptors in human neutrophils. Br J Pharmacol 136(1):57–66

    Article  CAS  PubMed  Google Scholar 

  • Varani K, Gessi S, Merighi S, Iannotta V, Cattabriga E, Pancaldi C, Cadossi R, Borea PA (2003) Alteration of A(3) adenosine receptors in human neutrophils and low frequency electromagnetic fields. Biochem Pharmacol 66(10):1897–1906

    Article  CAS  PubMed  Google Scholar 

  • Velot E, Haas B, Leonard F, Ernens I, Rolland-Turner M, Schwartz C, Longrois D, Devaux Y, Wagner DR (2008) Activation of the adenosine-A3 receptor stimulates matrix metalloproteinase-9 secretion by macrophages. Cardiovasc Res 80(2):246–254

    Article  CAS  PubMed  Google Scholar 

  • Zhang JG, Hepburn L, Cruz G, Borman RA, Clark KL (2005) The role of adenosine A2A and A2B receptors in the regulation of TNF-α production by human monocytes. Biochem Pharmacol 69(6):883–889

    Article  CAS  PubMed  Google Scholar 

  • Zhang N, Yang D, Dong H, Chen Q, Dimitrova DI, Rogers TJ, Sitkovsky M, Oppenheim JJ (2006) Adenosine A2a receptors induce heterologous desensitization of chemokine receptors. Blood 108(1):38–44

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Gessi, S., Sacchetto, V., Fogli, E., Fozard, J. (2010). A3 Adenosine Receptor Regulation of Cells of the Immune System and Modulation of Inflammation. In: Borea, P. (eds) A3 Adenosine Receptors from Cell Biology to Pharmacology and Therapeutics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3144-0_12

Download citation

Publish with us

Policies and ethics