Skip to main content

Mechanistic Aspects of Fetal Development Relating to Postnatal Fibre Production and Follicle Development in Ruminants

  • Chapter
  • First Online:
Managing the Prenatal Environment to Enhance Livestock Productivity

Abstract

More than 50 years ago, it was noted that wool follicle development in sheep fetuses suffering growth restriction in utero (e.g. twin lambs or single lambs born to maiden ewes) was significantly impaired [105]. A little later, observations of the postnatal wool production performance in lambs from ewes undernourished during gestation indicated that restriction of fetal development had permanent effects upon wool follicle development and long-lasting effects upon postnatal wool fibre production [107]. Though not described in this way at the time, these were early indicators that programming of the fetus for development takes cues from the “maternal environment” during gestation. The cues can be in operation as early as the first few days in embryonic life and possibly earlier [69, 120]. Fetal programming, and influences on gene expression and ultimately development imposed upon the fetus in utero, has become a topic of increasing interest over the last decade. This is especially so since lifetime consequences of such programming have been demonstrated in humans [6, 73]. Perturbed fetal programming can occur through different mechanisms and the effects of one such mechanism, intra-uterine growth retardation (IUGR), on development of the progeny have been reported in many publications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adelson, D.L., B.A. Kelley, and B.N. Nagorcka. 1992. Increase in dermal papilla cells by proliferation during development of the primary wool follicle. Aust. J. Agric. Res. 43:843–856.

    Article  Google Scholar 

  2. Adelson, D.L., D.E. Hollis, and G.E. Brown. 2002. Wool fibre diameter and follicle density are not specified simultaneously during wool follicle initiation. Aust. J. Agric. Res. 53:1003–1009.

    Article  Google Scholar 

  3. Alexander, G. 1956. Influence of nutrition upon duration of gestation in sheep. Nature 178:1058–1059.

    Article  CAS  PubMed  Google Scholar 

  4. Alexander, G. 1974. Birth weight of lambs: influences and consequences, pp. 213–239. In K. Elliott, and J. Knight, (eds.), Size at Birth, Elsevier, Amsterdam.

    Google Scholar 

  5. Alexander, G. and D. Williams. 1971. Heat stress and growth of the conceptus in sheep. Proc. Aust. Soc. Anim. Prod. 6:102–105.

    Google Scholar 

  6. Barker, D.J.P. 1998. Mothers, Babies and Health in Later Life. 2nd Ed. Churchill Livingstone, Edinburgh.

    Google Scholar 

  7. Barker, D. 2002. Fetal programming of coronary heart disease. Trends Endocrinol. Metab. 13:364–368.

    Article  CAS  PubMed  Google Scholar 

  8. Bell, A.W., B.W. McBride, R. Slepetis, R.J. Early, and W.B. Currie. 1989. Chronic heat stress and prenatal development in sheep: I. Conceptus growth and maternal plasma hormones and metabolites. J. Anim. Sci. 67:3289–3299.

    CAS  PubMed  Google Scholar 

  9. Black, J.L. and P.J. Reis. 1979. Speculation on the control of nutrient partition between wool growth and other body functions, pp. 269–293. In J.L. Black, and P.J. Reis, (eds.), Physiological and environmental limitations to wool growth, University of New England Publishing Unit, Armidale, N.S.W., Australia.

    Google Scholar 

  10. Blanpain, C., W.E. Lowry, A. Geoghegan, L. Polak, and E. Fuchs. 2004. Self-renewal, multipotency and the existence of two cell populations within and epithelial stem cell niche. Cell 118:635–648.

    Article  CAS  PubMed  Google Scholar 

  11. Blessing, M., L.B. Nanney, L.E.King, C.M. Jones, and B.L.M. Hogan. 1993. Transgenic mice as a model to study the role of TGF-ß related molecules in hair follicles. Genes Dev. 7:204–215

    Article  CAS  PubMed  Google Scholar 

  12. Botchkarev, V.A. and R. Paus. 2003. Molecular biology of hair morphogenesis: Development and cycling. J. Exp. Zoolog. B. Mol. Dev. Evol. 298:164–180.

    Google Scholar 

  13. Botchkarev, V.A., N.V. Botchkareva, K.M. Albers, C. van der Veen, G.R. Lewin, and R. Paus. 1998. Neurotrophin-3 involvement in the regulation of hair follicle morphogenesis. J. Invest. Dermatol. 111:279–285.

    Article  CAS  PubMed  Google Scholar 

  14. Botchkarev, V.A., N.V. Botchkareva, O. Huber, K. Funa, and B.A. Gilchrest. 2002. Modulation of BMP signaling by noggin is required for induction of the secondary (non-tylotrich) hair follicles. J. Invest. Dermatol. 118:3–10.

    Article  CAS  PubMed  Google Scholar 

  15. Botchkareva, N.V., V.A. Botchkarev, L.H. Chen, G. Lindner, and R. Paus. 1999. A role for p75 neurotrophin receptor in the control of hair follicle morphogenesis. Dev. Biol. 216:135–153.

    Article  CAS  PubMed  Google Scholar 

  16. Botchkareva, N.V., V.A. Botchkarev, M. Metz, I. Silos-Santiago, and R. Paus. 1999. Retardation of hair follicle development by the deletion of TrkC, high affinity neurotrophin-3 receptor. J. Invest. Dermatol. 113:425–427.

    Article  CAS  PubMed  Google Scholar 

  17. Carter, H.B. and W.H. Clarke. 1957. The hair follicle group and skin follicle population of Australian Merino sheep. Aust. J. Agric. Res. 8:91–108.

    Article  Google Scholar 

  18. Carter, H.B. and W.H. Clarke. 1957. The hair follicle group and skin follicle population of some non-Merino breeds of sheep. Aust. J. Ag. Res. 8:109–119.

    Article  Google Scholar 

  19. Carter, H.B. and M.H. Hardy. 1947. Studies in the biology of the skin and fleece of sheep. 4. The hair follicle group and its topographical variations in the skin of the Merino fetus. Coun. Sci. Industr. Res. Aust. Bull. No. 215.

    Google Scholar 

  20. Cartwright, G.A. and C.J. Thwaites. 1976. Fetal stunting in sheep. 1. The influence of maternal nutrition and high ambient temperature on the growth and proportions of Merino fetuses. J. Agric. Sci. 86:573–580.

    Article  Google Scholar 

  21. Cartwright, G.A. and C.J. Thwaites. 1976. Fetal stunting in sheep. 2. The effects of high ambient temperature during gestation on wool follicle development in the fetal lamb. J. Agric. Sci. 86:581–585.

    Article  Google Scholar 

  22. Champion, S.C. and G.E. Robards. 2000. Follicle characteristics, seasonal changes in fibre cross-sectional area and ellipticity in Australasian specialty carpet wool sheep, Romneys and Merinos. Small Rumin. Res. 38:71–82.

    Article  PubMed  Google Scholar 

  23. Chapman, R.E., P.S. Hopkins, and G.D. Thorburn. 1974. The effects of fetal thyroidectomy and thyroxine administration on the development of the skin and wool follicles of sheep fetuses. J. Anat. 117:419–432.

    CAS  PubMed  Google Scholar 

  24. Cock, M.L., E.J. Camm, S. Louey, B.J. Joyce, and R. Harding. 2001. Postnatal outcomes in term and preterm lambs following fetal growth restriction. Clin. Exp. Pharmacol. Physiol. 28:931–937.

    Article  CAS  PubMed  Google Scholar 

  25. Corbett, J.L. 1979. Variation in wool growth with physiological state, pp. 79–98. In J.L. Black, and P.J. Reis, (eds.), Physiological and environmental limitations to wool growth, University of New England Publishing Unit, Armidale, N.S.W., Australia.

    Google Scholar 

  26. Denney, G.D., K.J. Thornberry, and M.A. Sladek. 1988. The effect of pre and postnatal nutrient deprivation on live weight and wool production of single born Merino sheep. Proc. Aust. Soc. Anim. Prod. 17:174–177.

    Google Scholar 

  27. Denney, G.D. 1990. Effect of pre-weaning farm environment on adult wool production of Merino sheep. Aust. J. Exp. Agric. 30:17–25.

    Article  Google Scholar 

  28. Doney, J.M. and W.F. Smith. 1964. Modification of fleece development in Blackface sheep by variation in pre- and post-natal nutrition. Anim. Prod. 6:155–167.

    Article  Google Scholar 

  29. Dry, F.W. 1940. Recent work upon the wool zoology of the N.Z. Romney. N.Z. J. Sci. Tech. 22:209–220.

    Google Scholar 

  30. Early, R.J., B.W. McBride, I. Vatnick, and A.W. Bell. 1991. Chronic heat stress and prenatal development in sheep. II. Placental cellularity and metabolism. J. Anim. Sci. 69:3610–3616.

    CAS  PubMed  Google Scholar 

  31. Everitt, G.C. 1967. Residual effects of prenatal nutrition on the postnatal performance of Merino sheep. Proc. N.Z. Soc. Anim. Prod. 27:52–68.

    Google Scholar 

  32. Favier, B., I. Fliniaux, J. Thelu, J.P. Viallet, M. Demarchez, C.A. Jahoda, and D. Dhouailly. 2000. Localisation of members of the notch system and the differentiation of vibrissa hair follicles: receptors, ligands, and fringe modulators. Dev. Dyn. 218:426–437.

    Article  CAS  PubMed  Google Scholar 

  33. Ferguson, M., B. Paganoni, and G. Kearney. 2004. Lifetime Wool. 3. Ewe liveweight and condition score. Anim. Prod. Aust. 25:242.

    Google Scholar 

  34. Ferguson, M., D. Gordon, B. Paganoni, T. Plaisted, and G. Kearney. 2004. Lifetime Wool. 6. Progeny birth weights and survival. Anim. Prod. Aust. 25:243.

    Google Scholar 

  35. Ferguson, M., B. Paganoni, and G. Kearney. 2004. Lifetime Wool. 8. Progeny wool production and quality. Anim. Prod. Aust. 25:244.

    Google Scholar 

  36. Flanagan, L.M., J.E. Plowman, and W.G. Bryson. 2002. The high sulphur proteins of wool: Towards an understanding of sheep breed diversity. Proteomics 2:1240–1246.

    Article  CAS  PubMed  Google Scholar 

  37. Fowden, A.L. and A.J. Forhead. 2004. Endocrine mechanisms of intrauterine programming. Reproduction 127:515–526.

    Article  CAS  PubMed  Google Scholar 

  38. Fowden, A.L., J. Szemere, P. Hughes, R.S. Gilmour, and A.J. Forhead. 1996. The effects of cortisol on the growth rate of the sheep fetus during late gestation. J. Endocrinol. 151:97–105.

    Article  CAS  PubMed  Google Scholar 

  39. Fraser, A.S. 1952. Growth of the N-type fleece. Aust. J. Agric. Res. 3:435–444.

    Article  Google Scholar 

  40. Fraser, A.S. 1952. Growth of wool fibres in sheep. Aust. J. Agric. Res. 3:419–434.

    Article  Google Scholar 

  41. Fraser, A.S. 1954. Development of the skin follicle population in the Merino sheep. Aust. J. Agric. Res. 5:737–744.

    Article  Google Scholar 

  42. Fraser, A.S. and M. Hamada. 1952. Observations on some British sheep. Proc. Roy. Soc. Edinb. B 64:462–477.

    Google Scholar 

  43. Fraser, A.S. and B.F. Short. 1952. Competition between skin follicles in sheep. Aust. J. Agric. Res. 3:445–452.

    Article  Google Scholar 

  44. Godwin, A.R. and M.R. Capecchi. 1998. Hoxc13 mutant mice lack external hair. Genes Dev. 12:11–20.

    Article  CAS  PubMed  Google Scholar 

  45. Greenwood, P.L. and A.W. Bell. 2003. Consequences of intra-uterine growth retardation for postnatal growth, metabolism and pathophysiology. Reproduction Suppl. 61:195–206.

    CAS  Google Scholar 

  46. Greenwood, P.L., R.M. Slepetis, J.W. Hermanson and A.W. Bell. 1999. Intrauterine growth retardation is associated with reduced cell cycle activity, but not myofibre number, in ovine fetal muscle. Reprod. Fertil. Dev. 11:281–291.

    Article  CAS  PubMed  Google Scholar 

  47. Greenwood, P.L., A.S. Hunt, J.W. Hermanson, and A.W. Bell. 2000. Effects of birth weight and postnatal nutrition on neonatal sheep. II. Skeletal muscle growth and development. J. Anim. Sci. 78:50–61.

    CAS  PubMed  Google Scholar 

  48. Haines, B.P. 1991. BMP-2 expression in follicle development. Hons. Thesis, University of Adelaide, South Australia.

    Google Scholar 

  49. Harding, J.E., C.T. Jones, and J.S. Robinson. 1985. Studies on experimental growth retardation in sheep. The effect of a small placenta in restricting transport to and growth of the fetus. J. Dev. Physiol. 7:427–442.

    CAS  PubMed  Google Scholar 

  50. Hardy, M.H. and A.G. Lyne. 1956. The pre-natal development of wool follicles in Merino sheep. Aust. J. Biol. Sci. 9:423–441.

    Google Scholar 

  51. Heasman, L., L. Clarke, K. Firth, T. Stephenson, and M.E. Symonds. 1998. Influence of restricted maternal nutrition in early to mid gestation on placental and fetal development at term in sheep. Pediatr. Res. 44:546–51.

    Article  CAS  PubMed  Google Scholar 

  52. Hocking Edwards, J.E., M.J. Birtles, P.M. Harris, A.L. Parry, E. Paterson, G.A. Wickham, and S.N. McCutcheon. 1996. Pre-and post-natal wool follicle development and density in sheep of five genotypes. J. Agric. Sci. 126:363–370.

    Article  Google Scholar 

  53. Hocking Edwards, J.E., J. Newnham, M. Ikegami, D. Polk, and A. Jobe. 1997. Beta-methasone increases sweat gland formation and suppresses fibre formation in fetal sheep. Aust. J. Dermatol. 38:A327.

    Google Scholar 

  54. Holst, P.J., I.D. Killeen, and B.R. Cullis. 1986. Nutrition of the pregnant ewe and its effects on gestation length, lamb birth weight and lamb survival. Aust. J. Agric. Res. 37:647–655.

    Article  Google Scholar 

  55. Holst, P.J., C.J. Allan, and A.R. Gilmour. 1992. Effects of a restricted diet during mid pregnancy of ewes on uterine and fetal growth and lamb birth weight. Aust. J. Agric. Res. 43:315–324.

    Article  Google Scholar 

  56. Hopkins, P.S. and G.D. Thorburn. 1972. The effects of fetal thyroidectomy on the development of the ovine fetus. J. Endocrinol. 52:55–66.

    Article  Google Scholar 

  57. Huelsken, J., R. Vogel, B. Erdmann, G. Cotsarelis, and W. Birchmeier. 2001. ß-catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell 105:533–545.

    Article  CAS  PubMed  Google Scholar 

  58. Hutchison, G. and D.J. Mellor. 1983. Effects of maternal nutrition on the initiation of secondary wool follicles in fetal sheep. J. Comp. Path. 93:577–583.

    Article  CAS  PubMed  Google Scholar 

  59. Ibrahim, L. and E.A. Wright. 1982. A quantitative study of hair growth using mouse and rat vibrissal follicles. I. Dermal papilla volume determines hair volume. J. Embryol. Exp. Morphol. 72:209–224.

    CAS  PubMed  Google Scholar 

  60. Jacobs, R., J. Falconer, J.S. Robinson, and M.E.D. Webster. 1986. Effect of hypoxia on the initiation of secondary wool follicles in the fetus. Aust. J. Biol. Sci. 39:79–83.

    CAS  PubMed  Google Scholar 

  61. Jahoda, C.A.B., J. Whitehouse, A.J. Reynolds, and N. Hole. 2003. Hair follicle stem cells differentiate into adipocyte and osteogenic lines Exp. Dermatol. 12:849–859.

    Article  PubMed  Google Scholar 

  62. Jave-Suarez, L.F., H. Winter, L. Langbein, M.A. Rogers, and J. Schweizer. 2001. HOXC13 is involved in the regulation of human hair keratin gene expression. J. Biol. Chem. 277:3718–3726.

    Article  PubMed  CAS  Google Scholar 

  63. Jopson, N.B., G.H. Davis, P.A. Farquhar, and W.E. Bain. 2002. Effects of mid-pregancy nutrition and shearing on ewe body reserves and fetal growth. Proc. N.Z. Soc. Anim. Prod. 62:49–52.

    Google Scholar 

  64. Karlsson, L., C. Bondjers, and C. Betsholtz. 1999. Roles for PDGF-A and sonic hedgehog in development of mesenchymal components of the hair follicle. Development 126:2611–2621.

    CAS  PubMed  Google Scholar 

  65. Kelly, R.W., I. MacLeod, P. Hynd, and J. Greeff. 1996. Nutrition during fetal life alters annual wool production and quality in young Merino sheep. Aust. J. Exp. Agric. 36:259–267.

    Article  Google Scholar 

  66. Kelly, R.W., J.C. Greeff, and I. Macleod. 2006. Lifetime changes in wool production in Merino sheep following differential feeding in fetal and early life. Aust. J. Agric. Res. 57:867–876.

    Article  Google Scholar 

  67. Kenyon, P.R., R.G. Sherlock, and S.T. Morris. 2004. Are elevated maternal thyroid hormone concentrations post mid-pregnancy shearing responsible for changes in lamb fleece characteristics ? Proc. N.Z. Soc. Anim. Prod. 64:272–276.

    Google Scholar 

  68. Kenyon, P.R., R.G. Sherlock, T.J. Parkinson, and S.T. Morris. 2005. The effect of maternal shearing and thyroid hormone treatments in mid pregnancy on the birth weight, follicle and wool characteristics of lambs. N.Z. J. Agric. Res. 48:293–300.

    Article  CAS  Google Scholar 

  69. Kleemann, D.O., S.K. Walker, and R.F. Seamark. 1994. Enhanced fetal growth in sheep administered progesterone during the first three days of pregnancy. J. Reprod. Fertil. 102:411–417.

    Article  CAS  PubMed  Google Scholar 

  70. Kleemann, D.O., S.K. Walker, K.M. Hartwich, F. Lok, R.F. Seamark, J.S. Robinson, and J.A. Owens. 2001. Fetoplacental growth in sheep administered progesterone during the first three days of pregnancy. Placenta 22:14–23.

    Article  CAS  PubMed  Google Scholar 

  71. Krausgrill, D.I., N.M. Tulloh, W.R. Shorthose, and K. Sharpe. 1999. Effects of weight loss in ewes in early pregnancy on muscles and meat quality of lambs. J. Agric. Sci. 132:103–116.

    Article  Google Scholar 

  72. Kulessa, H., G. Turk, and B.L. Hogan. 2000. Inhibition of Bmp signaling affects growth and differentiation in the anagen hair follicle. EMBO J. 19:6664–6674.

    Article  CAS  PubMed  Google Scholar 

  73. Langley-Evans, S.C. 2001. Fetal programming of cardiovascular function through exposure to maternal undernutrition. Proc. Nutr. Soc. 60:505–513.

    Article  CAS  PubMed  Google Scholar 

  74. Laurikkala, J., J. Pispa, H.-S. Jung, P. Nieminen, M. Mikkola, X. Wang, U. Saarialho-Kere, J. Galceran, R. Grosschedl, and I. Thesleff. 2002. Regulation of hair follicle development by the TNF signal ectodysplasin and its receptor Edar. Development 129:2541–2553.

    CAS  PubMed  Google Scholar 

  75. Liu, S.M., G. Mata, H. O’Donaghue, and D.G. Masters. 1998. The influence of live weight, live-weight change and diet on protein synthesis in the skin and skeletal muscle in young Merino sheep. Br. J. Nutr. 79:267–274.

    Article  CAS  PubMed  Google Scholar 

  76. Lindner, G., A. Menrad, E. Gherardi, G. Merlino, P. Walker, B. Handjiski, B. Roloff, and R. Paus. 2000. Involvement of hepatocyte growth factor/scatter factor and met signaling in hair follicle morphogenesis and cycling. FASEB J. 14:319–332.

    CAS  PubMed  Google Scholar 

  77. Mandler, M. and A. Neubüser. 2004. FGF signaling is required for initiation of feather placode development. Development 131:3333–3343.

    Article  CAS  PubMed  Google Scholar 

  78. Meier, N., T.N. Dear, and T. Boehm. 1999. Whn and mHa3 are components of the genetic hierarchy controlling hair follicle differentiation. Mech. Dev. 89:215–221.

    Article  CAS  PubMed  Google Scholar 

  79. Mellor, D.J. 1983. Nutritional and placental determinants of fetal growth rate in sheep and consequences for the newborn lamb. Br. Vet. J. 139:307–324.

    CAS  PubMed  Google Scholar 

  80. Mellor, D.J. and L. Murray. 1981. Effects of placental weight and maternal nutrition on the growth rates of individual fetuses in single and twin bearing ewes during late pregnancy. Res. Vet. Sci. 30:198–204.

    CAS  PubMed  Google Scholar 

  81. Mellor. D.J. and L. Murray. 1982. Effects on the rate of increase in fetal girth of refeeding ewes after short periods of severe undernutrition during late pregnancy. Res. Vet. Sci. 32:377–382.

    CAS  PubMed  Google Scholar 

  82. Mellor, D.J. and L. Murray. 1982. Effects of long term undernutrition of the ewe on growth rates of individual fetuses during late pregnancy. Res. Vet. Sci. 32:177–180.

    CAS  PubMed  Google Scholar 

  83. Millar, S. 2002. Molecular mechanisms regulating hair follicle development. J. Invest. Dermatol. 118:216–225.

    Article  CAS  PubMed  Google Scholar 

  84. Moore, G.P.M., N. Jackson, and J. Lax. 1989. Evidence of a unique developmental mechanism specifying both wool follicle density and fibre size in sheep selected for single skin and fleece characters. Genet. Res. 53:57–62.

    Article  CAS  PubMed  Google Scholar 

  85. Moore, G.P.M., N. Jacskon, K. Isaacs, and G. Brown. 1998. Pattern and Morphogenesis in Skin. J. Theor. Biol. 191:87–94.

    Article  CAS  PubMed  Google Scholar 

  86. Morris, S.T. and S.N. McCutcheon. 1997. Selective enhancement of growth in twin fetuses by shearing ewes in early gestation. Anim. Sci. 65:105–110.

    Article  Google Scholar 

  87. Morris, S.T., S.N. McCutcheon, and D.K. Revell. 2000. Birth weight responses to shearing ewes in early to mid gestation. Anim. Sci. 70:363–369.

    Google Scholar 

  88. Morris, R.J., Y. Liu, L. Marles, Z. Yang, C. Trempus, S. Li, J.S. Lin, J.A. Sawicki and G. Cotsarelis. 2004. Capturing and profiling adult hair follicle stem cells. Nat. Biotechnol. 22, 411–417.

    Article  CAS  PubMed  Google Scholar 

  89. Nakamura, M., M.M. Matzuk, B. Gerstmayer, A. Bosio, R. Lauster, Y. Miyachi, S. Werner, and R. Paus. 2003. Control of pelage hair follicle development and cycling by complex interactions between follistatin and activin. FASEB J. 17:497–499.

    CAS  PubMed  Google Scholar 

  90. Ohuchi, H., H. Tao, K. Ohata, N. Itoh, S. Kato, S. Noji, and K. Ono. 2003. Fibroblast growth factor 10 is required for proper development of the mouse whiskers. Biochem. Biophys. Res. Comm. 302:562–567.

    Article  CAS  PubMed  Google Scholar 

  91. Oldham, C.M. and A.N. Thompson. 2004. Lifetime Wool. 5. Carryover effects on ewe reproduction. Anim. Prod. Aust. 25:291.

    Google Scholar 

  92. Oldham, C.M., P. Barber, M. Curnow, S. Giles, and J. Speijers. 2004. Lifetime Wool. 14. Putting it all together in the paddock. Anim. Prod. Aust. 25:292.

    Google Scholar 

  93. Olivera-Martinez, I., J. Thelu, M.A. Teillet, and D. Dhouailly. 2001. Dorsal dermis development depends on a signal from the dorsal neural tube, which can be substituted by Wnt-1. Mech. Dev. 100:233–244.

    Article  CAS  PubMed  Google Scholar 

  94. Paganoni, B.L., M. Ferguson, G. Kearney, and T. Plaisted. 2004. Lifetime Wool. 7. Progeny growth rates. Anim. Prod. Aust. 25:295.

    Google Scholar 

  95. Paganoni, B.L., M. Ferguson, and G. Kearney. 2004. Lifetime Wool. 4. Ewe wool production and quality. Anim. Prod. Aust. 25:294.

    Google Scholar 

  96. Parr, R.A., A.H. Williams, I.P. Campbell, G.F. Witcombe, and A.M. Roberts. 1986. Low nutrition of ewes in early pregnancy and the residual effect on the offspring. J. Agric. Sci. 106:81–87.

    Article  Google Scholar 

  97. Paus, R., E.M.J. Peters, S. Eichmüller, and V.A. Botchkarev. 1997. Neural mechanisms of hair growth control. J. Invest. Dermatol. Symp. Proc. 2:61–68.

    CAS  Google Scholar 

  98. Plowman, J.E., W.G. Bryson, and T.W. Jordan. 2000. Application of proteomics for determining protein markers for wool quality traits. Electrophoresis 21:1899–1906.

    Article  CAS  PubMed  Google Scholar 

  99. Powell, B.C. and G.E. Rogers. 1997. The role of keratin proteins and their genes in the growth, structure and properties of hair, pp. 59–148. In P. Jollès, H. Zahn, and H. Höcker, (eds.), Formation and Structure of Human Hair, Birkhauser Verlag, Basel, Switzerland.

    Google Scholar 

  100. Powell, B.C., E.A. Passmore, A. Nesci, and S.M. Dunn. 1998. The Notch signalling pathway in hair growth. Mech. Dev. 78:189–192.

    Article  CAS  PubMed  Google Scholar 

  101. Pugh, C.W. and P.J. Ratcliffe. 2003. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat. Med. 9:677–684.

    Article  CAS  PubMed  Google Scholar 

  102. Quigley, S.P., D.O. Kleemann, M.A. Kakar, J.A. Owens, G.S. Nattrass, S. Maddocks, and S.K. Walker. 2005. Myogenesis in sheep is altered by maternal feed intake during the peri-conception period. Anim. Reprod. Sci. 87:241–251.

    Article  CAS  PubMed  Google Scholar 

  103. Reddy, S., T. Andl, A. Bagasra, M.M. Lu, D.J. Epstein, E.E. Morrisey, and S.E. Millar. 2001. Characterisation of Wnt gene expression in developing and postnatal hair follicles and identification of Wnt5a as a target of Sonic hedgehog in hair follicle morphogenesis. Mech. Dev. 107:69–82.

    Article  CAS  PubMed  Google Scholar 

  104. Revell, D.K., S.T. Morris, Y.H. Cottam, J.E. Hanna, D.G. Thomas, S. Brown, and S.N. McCutcheon. 2002. Shearing ewes at mid-pregnancy is associated with changes in fetal growth and development. Aust. J. Agric. Res. 53:697–705.

    Article  Google Scholar 

  105. Schinckel, P.G. 1953. Follicle development in the Australian Merino. Nature 171:310–311.

    Article  CAS  PubMed  Google Scholar 

  106. Schinckel, P.G. 1955. The relationship of skin follicle development to growth rate in sheep. Aust. J. Agric. Res. 6:308–323.

    Article  Google Scholar 

  107. Schinckel, P.G. and B.F. Short. 1961. The influence of nutritional level during pre-natal and early post-natal life on adult fleece and body characteristics. Aust. J. Agric. Res. 12:176–202.

    Article  Google Scholar 

  108. Schmidt-Ullrich, R. and R. Paus. 2005. Molecular principles of hair follicle induction and morphogenesis. BioEssays 27:247–261.

    Article  CAS  PubMed  Google Scholar 

  109. Shelton, M. 1964. Relation of environmental temperature during gestation to birth weight and mortality of lambs. J. Anim. Sci. 23:360–364.

    Google Scholar 

  110. Sherlock R.G., P.R. Kenyon, and S.T. Morris. 2002. Does mid-pregnancy shearing affect lamb fleece characteristics ? Proc. N.Z. Soc. Anim. Prod. 62:57–60.

    Google Scholar 

  111. Short, B.F. 1955. Development of the secondary follicle population in sheep. Aust. J. Agric. Res. 6:62–67.

    Article  Google Scholar 

  112. Short, B.F. 1955. Developmental modification of fleece structure by adverse maternal nutrition. Aust. J. Agric. Res. 6:863–872.

    Article  Google Scholar 

  113. Stephenson, S.K. 1958. Wool follicle development in the New Zealand Romney and N-type sheep. II Follicle population density during fetal development. Aust. J. Agric. Res. 8: 138–160.

    Article  Google Scholar 

  114. St-Jacques, B., H.R. Dassule, I. Karavanova, V.A. Botchkarev, J. Li, P.S. Danielian, J.A. McMahon, P.M. Lewis, R. Paus, and A.P. McMahon. 1998. Sonic hedgehog signaling is essential for hair development. Curr. Biol. 8:1058–1068

    Article  CAS  PubMed  Google Scholar 

  115. Symonds, M.E., M.J. Bryant, and M.A. Lomax. 1989. Lipid metabolism in shorn and unshorn pregnant sheep. Br. J. Nutr. 62:35–49.

    Article  CAS  PubMed  Google Scholar 

  116. Tao, H., Y. Yoshimoto, H. Yoshioka, T. Nohno, S. Noji, and H. Ohuchi. 2002. FGF10 is a mesenchymally derived stimulator for epidermal development in the chick embryonic skin. Mech. Dev. 116:39–49.

    Article  CAS  PubMed  Google Scholar 

  117. Taplin, D.E. and G.C. Everitt. 1964. The influence of prenatal nutrition on postnatal performance of merino lambs. Proc. Aust. Soc. Anim. Prod. 5:72–81.

    Google Scholar 

  118. Thompson, A.N. and C.M. Oldham. 2004. Lifetime Wool. 1. Project Overview. Anim. Prod. Aust. 25:326.

    Google Scholar 

  119. Viallet, J.P., F. Prin, I. Olivera-Martinez, E. Hirsinger, O. Pourquie, and D. Dhouailly. 1998. Chick Delta-1 gene expression and the formation of the feather primordia. Mech. Dev. 72:159–168.

    Article  CAS  PubMed  Google Scholar 

  120. Walker, S.K., T.M. Heard, C.A. Bee, A.B. Frensham, D.M. Warnes, and R.F. Seamark. 1992. Culture of embryos of farm animals, pp. 77–92. In A. Lauria, and F. Gandolphi, (eds.), Embryonic Development and Manipulation in Animal Production, Portland Press Ltd., London.

    Google Scholar 

  121. Wallace, A.L.C. 1979. The effect of hormones on wool growth, pp. 257–268. In J.L. Black, and P.J. Reis, (eds.), Physiological and environmental limitations to wool growth, University of New England Publishing Unit, Armidale, N.S.W., Australia.

    Google Scholar 

  122. Wallace, C.E., M.W. Simpson-Morgan, and P. McCullagh. 1994. Retarded and excessive development of skin appendages in fetal lambs in response to thyroidectomy before wool follicle appearance. J. Comp. Pathol. 110:275–286.

    Article  CAS  PubMed  Google Scholar 

  123. Wilson, N., P.I. Hynd, and B.C. Powell. 1999. The role of BMP-2 and BMP-4 in follicle initiation and the murine hair cycle. Exp. Dermatol. 8:367–368.

    CAS  PubMed  Google Scholar 

  124. Yeates, N.T.M. 1956. The effect of high air temperature on pregnancy and birth weight in Merino sheep. Aust. J. Agric. Res. 7:435–439.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Simon Bawden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bawden, C.S., Kleemann, D.O., McLaughlan, C.J., Nattrass, G.S., Dunn, S.M. (2009). Mechanistic Aspects of Fetal Development Relating to Postnatal Fibre Production and Follicle Development in Ruminants. In: Greenwood, P., Bell, A., Vercoe, P., Viljoen, G. (eds) Managing the Prenatal Environment to Enhance Livestock Productivity. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3135-8_5

Download citation

Publish with us

Policies and ethics