Skip to main content

Abstract

When designing primers, it is of initial importance to define the target area, and secondly the type of application. The BLAST function from the National Center for Biotechnology Information (NCBI) will help to identify the most suitable gene sequence to be used. There are many software programs; some free on websites/pages on the internet, dedicated to primer design and primer optimisation. In this chapter the most important factors that need to be taken into consideration when designing and optimising primers are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Hellemans, J, et al. 2007. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol., 8(2), R19.

    Article  PubMed  Google Scholar 

  2. Vandesompele, J, De Preter, K, Pattyn, F, Poppe, B, Van Roy, N, De Paepe, A, Speleman, F. 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol., 3(7), research0034.1–research0034.11

    Google Scholar 

  3. Higuchi, R, Fockler, C, Dollinger, G, Watson, R. 1993. Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology, 11, 1026–30.

    Article  CAS  PubMed  Google Scholar 

  4. Morrison, TB, Weis, JJ, Wittwer, CT.1998. Quantification of low-copy transcripts by continuous SYBR® Green I monitoring during amplification. BioTechniques, 24, 954–62.

    CAS  PubMed  Google Scholar 

  5. Malinen, E, Kassinen, A, Rinttila, T, Palva, A. 2003. Comparison of real-time PCR with SYBR® Green I or 5′-nuclease assays and dot-blot hybridization with rDNA-targeted oligonucleotide probes in quantification of selected faecal bacteria. Microbiology, 149, 269–77.

    Article  CAS  PubMed  Google Scholar 

  6. Bustin, SA. 2000. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J. Mol. Endocrinol., 25, 169–93.

    Article  CAS  PubMed  Google Scholar 

  7. Vandesompele, J, De Paepe, A, Speleman, F. 2002. Elimination of primer-dimer artifacts and genomic coamplification using a two-step SYBR® green I real-time RT-PCR. Anal. Biochem., 303, 95–8.

    Article  CAS  PubMed  Google Scholar 

  8. Souaze, F, Ntodou-Thome, A, Tran, CY, Rostene, W, Forgez, P. 1996. Quantitative RT-PCR: limits and accuracy. BioTechniques, 21,280–5.

    CAS  PubMed  Google Scholar 

  9. Giulietti, A, Overbergh, L, Valckx, D, Decallonne, B, Bouillon, R, Mathieu, C. 2001. An overview of real-time quantitative PCR : applications to quantify cytokine gene expression. Methods, 25, 386–401.

    Article  CAS  PubMed  Google Scholar 

  10. Livak, KJ, Schmittgen, TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods, 25, 402–8.

    Article  CAS  PubMed  Google Scholar 

  11. Marino, JH, Cook, P, Miller, KS. 2003. Accurate and statistically verified quantification of relative mRNA abundances using SYBR® Green I and real-time RT-PCR. J. Immunol. Methods, 283, 291–306.

    Article  CAS  PubMed  Google Scholar 

  12. Pfaffl, MW. 2001. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res., 29, 45.

    Article  Google Scholar 

  13. Freeman, W-M, Walker, SJ, Vrana, KE. 1999. Quantitative RT-PCR: pitfalls and potential. BioTechniques, 26, 112–15.

    CAS  PubMed  Google Scholar 

  14. Peirson, SN, Butler, JN, Foster, RG. 2003. Experimental validation of novel and conventional approaches to quantitative real-time PCR data analysis. Nucleic Acids Res. 31, 73.

    Article  Google Scholar 

  15. Klein, D. 2002. Quantification using real-time PCR technology: applications and limitations. Trends Mol. Med., 8, 257–60.

    Article  CAS  PubMed  Google Scholar 

  16. Pfaffl, MW, Horgan, GW, Dempfle, L. 2002. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR . Nucleic Acids Res., 30, 36.

    Article  Google Scholar 

  17. Ririe, KM, Rasmussen, RP, Wittwer, CT. 1997. Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Anal. Biochem., 245, 154–60.

    Article  CAS  PubMed  Google Scholar 

  18. Lekanne Deprez, RH, Fijnvandraat, AC, Ruijter, JM, Moorman, AF. 2002. Sensitivity and accuracy of quantitative real-time polymerase chain reaction using SYBR® green I depends on cDNA synthesis conditions. Anal. Biochem., 307, 63–69.

    Article  CAS  PubMed  Google Scholar 

  19. Wu, DY, Ugozzoli, L, Pal, BK, Qian, J, Wallace, RB. 1991. The effect of temperature and oligonucleotide primer length on the specificity and efficiency of amplification by the polymerase chain reaction. DNA Cell Biol., 10, 233–8.

    Article  CAS  PubMed  Google Scholar 

  20. Tichopad, A, Didier, A, Pfaffl, MW. 2004. Inhibition of real-time RT-PCR quantification due to tissue-specific contaminants. Mol. Cell Probes, 18, 45–50.

    Article  CAS  PubMed  Google Scholar 

  21. Yuan, JS, Feng Chen, AR, Stewart, CN. 2006. Statistical analysis of real-time PCR data. BMC Bioinformatics, 7, 85.

    Article  PubMed  Google Scholar 

  22. Sabek, O, Dorak, MT, Kotb, M, Gaber, AO, Gaber, L. 2002. Quantitative detection of T-cell activation markers by real-time PCR in renal transplant rejection and correlation with histopathologic evaluation. Transplantation, 74(5), 701–7

    Google Scholar 

  23. Troubleshooting

    Google Scholar 

  24. http://www3.appliedbiosystems.com/cms/groups/mcb_support/documents/generaldocuments/cms_042997.pdf

  25. http://www.abgene.com/downloads/Guide_QPCR-probe.pdf

  26. http://www.protocol-online.org/prot/Molecular_Biology/PCR/Real-Time_PCR/

  27. http://www.ambion.com/techlib/tn/102/17.html

  28. http://www.appliedbiosystems.com/support/tutorials/pdf/data_analysis_7700.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ericka A. Pestana .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Pestana, E.A., Belak, S., Diallo, A., Crowther, J.R., Viljoen, G.J. (2009). Analysis and Troubleshooting. In: Early, rapid and sensitive veterinary molecular diagnostics - real time PCR applications. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3132-7_7

Download citation

Publish with us

Policies and ethics