Skip to main content

Global Climate Change, Stress and Plant Productivity

  • Chapter
  • First Online:
Book cover Abiotic Stress Adaptation in Plants

Summary

Global climate change, rated as the most serious threat to the environment, has been the center of debate among environmentalists and policy makers as it has become not only an environmental, a political and an economic issue, but also a global problem, of which agriculture is the major target. At the plant or field scale, climate change is likely to interact with rising CO2 concentrations and other environmental changes such as temperature, precipitation (associated with changes in tropo-, as well as stratospheric ozone levels) and UV-B radiation to affect crop physiology. The present chapter reviews the potential changes in plant physiological processes caused by these factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

EGP:

eastern gangetic plains

FAO:

Food and Agricultural Organization of the United Nations

FACE:

free-air CO2 enrichment

GCM:

general circulation models

GFDL:

Geophysical Fluid Dynamics Laboratory

GWP:

global warming potential

GISS:

Goddard Institute for Space Studies

GHGs:

greenhouse gases

HSPs:

heat shock proteins

IPCC:

Intergovernmental Panel on Climate Change

NUE:

nitrogen use efficiency

PFCs:

perfluorocarbons

RWC:

relative water content

RuBisCo:

ribulose-1,5-biphosphate carboxylase/oxygenase

SREC:

Special Report on Emission Scenarios

TKW:

thermal kinetic window

UKMO:

United Kingdom Meteorological Office

WUE:

water use efficiency

References

  • Abrol YP, Ingram KT (1996) Effects of elevated CO2 and temperature on growth and yields of some crop plants. In: Bazzaz F, Sombroek W (eds) Global climate change and agricultural production. Wiley, New York, pp 123-140

    Google Scholar 

  • Abrol YP, Wattal PN, Gnanm A, Govindjee, Ort DR, Teramura AH (eds) (1991) Impact of global climatic changes on photosynthesis and plant productivity. Proc Indo-US Workshop, Oxford & IBH Publishing Co., New Delhi, p 872

    Google Scholar 

  • Aggarwal PK (2003) Impact of climate change on Indian agriculture. J Plant Biol 30:189-198

    Google Scholar 

  • Al-Khatib K, Paulsen GM (1990) Photosynthesis and productivity during high temperature stress of wheat genotypes from major world regions. Crop Sci 30:1127-1132

    Article  Google Scholar 

  • Allen LH Jr, Vu JCV, Valle RR, Boote KJ, Jones PH (1988) Nonstructural carbohydrates and nitrogen of soybean grown under carbon dioxide enrichment. Crop Sci 28:84-94

    Article  Google Scholar 

  • Amthor JS (1994) Respiration and carbon assimilation use. In: Boot KJ, Bennett JM, Sinclair TR, Paulsen GM (eds) Physiology and determination of crop yield. American Soc Agron, Madison, WI, pp 221-250

    Google Scholar 

  • Amthor JS (1997) Plant respiratory responses to elevated carbon dioxide concentration. Field Crops Res 73:1-34

    Article  Google Scholar 

  • Amthor JS, Mitchell RJ, Runion GB, Rogers HH, Prior SA, Wood CW (1994) Energy content, construction cost and phytomass accumulation of Glycine max L. Merr and Sorghum bicolor L. Moench grown in elevated CO2 in the field. New Phytol 128:443-450

    Article  Google Scholar 

  • Araus JL, Slafer GA, Reynolds MP, Royo MAJ (2002) Plant breeding and drought in C3 cereals: what should we breed for? Ann Bot 89:925-940

    Article  PubMed  Google Scholar 

  • Asana RD, Williams RF (1965) The effect of temperature stress on grain development in wheat. Aust J Agric Res 16:1-13

    Article  Google Scholar 

  • Bachelet D, Kern J, Tolg M (1995) Balancing the rice carbon budget in China using spatially-distributed data. Ecol Model 79:167-177

    Article  CAS  Google Scholar 

  • Bagga AK, Rawson HM (1977) Contrasting responses of morphologically similar wheat cultivars to temperatures appropriate to warm temperate climates with hot summers: a study in controlled environment. Aust J Plant Physiol 4:877-887

    Article  Google Scholar 

  • Baker JT, Laugel R, Boote KJ, Allen LH Jr (1992a) Effects of daytime carbon dioxide concentration on dark respiration of rice. Plant Cell Environ 15:231-239

    Article  CAS  Google Scholar 

  • Baker JT, Allen LH Jr, Boote KJ (1992b) Temperature effects on rice at elevated CO2 concentration. J Exp Bot 43:875-1000

    Article  Google Scholar 

  • Baker JT, Allen LH Jr, Boote KJ (1992c) Response of rice to CO2 and temperature. Agric For Meteorol 60:153-166

    Article  Google Scholar 

  • Bannyayan M, Kobayashi K, Kim H, Lieffering M, Okada M, Mirza S (2005) Modelling the interactive effects of atmospheric CO2 and N on rice growth and yield. Field Crops Res 93:237-251

    Article  Google Scholar 

  • Bhullar SS, Jenner CF (1983) Responses to brief periods of elevated temperatures in ears and grain of wheat. Aust J Plant Physiol 10:549-560

    Article  Google Scholar 

  • Bhullar SS, Jenner CF (1985) Differential responses to high temperature of starch and nitrogen accumulation in the grain of four cultivars of wheat. Aust J Plant Physiol 12:313-325

    Article  Google Scholar 

  • Bhullar SS, Jenner CF (1986) Effect of a brief episode of elevated temperature on grain filling in wheat ears cultured on solution of sucrose. Aust J Plant Physiol 13:617-626

    Article  CAS  Google Scholar 

  • Bhushan B, Singh K, Kaur S, Nanda GS (2002) Inheritance and allelic relationship of leaf blight resistance genes in three bread wheat varieties in the adult plant stage. Genet Plant Breed 56:69-76

    CAS  Google Scholar 

  • Black TA, Chen WJ, Barr AG, Arain MA, Chen Z, Nesic Z, Hogg EH, Bouman BAM, Van Laar HH (2006) Description and evaluation of rice growth model ORYZA 2000 under nitrogen limited conditions. Agric Syst 87:249-273

    Article  Google Scholar 

  • Bloom AJ, Smart DR, Nguyen DT, Searles PS (2002) Nitrogen assimilation and growth of wheat under elevated carbon dioxide. Proc Nat Acad Sci USA 99:1730-1735

    Article  PubMed  CAS  Google Scholar 

  • Bouman BAM, Van Laar HH (2006) Description and evaluation of rice growth model ORYZA 2000 under nitrogen limited conditions. Agric Syst 87:249-273

    Article  Google Scholar 

  • Brown RA, Rosenberg NJ (1997) Sensitivity of crop yield and water use to change in a range of climatic factors and CO2 concentrations: a simulation study applying EPIC to the central USA. Agric Fores Meteor 83:171-203

    Article  Google Scholar 

  • Bunce JA (1998) Effect of humidity on short-term responses of stomatal conductance to an increase in carbon dioxide concentration. Plant Cell Environ 21:115-120

    Article  Google Scholar 

  • Burke JJ (1990) High temperature stress and adaptation in crops. In: Alscher RG, Cummings JR (eds) Stress response in plants: adaptation and acclimation mechanisms. Wiley-Liss, New York, pp 295-309

    Google Scholar 

  • Burke JJ, Mahan JR, Hatfield JL (1988) Crop specific thermal kinetic windows in relation to wheat and cotton biomass production. Agron J 80:553-556

    Article  Google Scholar 

  • Carter EB, Theodorou MK, Morison P (1997) Responses of Lotus corniculatus to environmental change. New Phytol 136:245-253

    Article  Google Scholar 

  • Chaves M (2002) Water stress in the regulation of photosynthesis in the field. Ann Bot 89:907-916

    Article  PubMed  CAS  Google Scholar 

  • Cicerone RJ (1987) Changes in stratospheric ozone. Science 237:35-42

    Article  PubMed  CAS  Google Scholar 

  • Conroy JP (1992) Influence of elevated atmospheric CO2 concentrations on plant nutrition. Aust J Bot 40:445-456

    CAS  Google Scholar 

  • de Lespinay A (2004) Selection for stable resistance to Helminthosporium leaf blights in non-traditional warm wheat areas. MS thesis, Université Catholique de Louvain, Louvain-La-Neuve

    Google Scholar 

  • Debi S (2003) The dark white shroud Himal South Asian. http://www.himalmag.com/2003/march/essay.htm

  • Drake BG (1992) The impact of rising CO2 on ecosystem production. Water Air Soil Pollut 64:25-44

    Article  CAS  Google Scholar 

  • Duveiller E, Kandel YR, Sharma RC, Shrestha SM (2005) Epidemiology of foliar blights (spot blotch and tan spot) of wheat in the plains bordering the Himalayas. Phytopathology 95:248-256

    Article  PubMed  CAS  Google Scholar 

  • Eckey-Kaltenbach H, Großkopf E, Sandermann H, Ernst D (1994) Induction of pathogen defence genes in parsley (Petroselinum crispum L.) plants by ozone. Proc Royal Soc Edinb 102B:63-74

    Google Scholar 

  • Egeh AO, Ingram KT, Zamora OB (1994) High temperature effects on leaf exchange. Phil J Crop Sci 17:21-26

    Google Scholar 

  • Ellis RH, Craufurd PQ, Summerfield RJ, Roberts EH (1995) Linear relationship between carbon dioxide concentration and rate of development towards flowering in sorghum, cowpea and soybean. Ann Bot 75:193-198

    Article  Google Scholar 

  • Eriksson M, Villand P, Garderstrom P, Samuelsson G (1998) Induction and regulation of expression of a low-CO2-induced mitochondrial carbonic anhydrase in Chlamy­domonas reinhardtii. Plant Physiol 116:637-641

    Article  PubMed  CAS  Google Scholar 

  • Ernst D, Schraudner M, Langebartels C, Sandermann H (1992) Ozone-induced changes of mRNA levels of β-1, 3-glucanase, chitinase and pathogenesis-related protein 1b in tobacco plants. Plant Mol Biol 20:673-682

    Article  PubMed  CAS  Google Scholar 

  • FAO (2006) Statistical database. http://www.fao.org. Cited 4 Feb 2006

  • Foyer C, Noctor G (eds) (2002) Photosynthetic nitrogen assimilation and associated carbon and respiratory metabolism, advances in photosynthesis and respiration, vol. 12 (series editor, Govindjee). Springer, Dordrecht

    Google Scholar 

  • Goudriaan J, Unsworth MH (1990) Implications of increasing carbon dioxide and climate change for agricultural productivity and water resources. In: Kimball BA, Rosenberg NR, Allen LH Jr (eds) Impact of carbon dioxide, trace gases and climate change on global agriculture, special publication number 53. American Society of Agronomy, Madison, WI, pp 291-297

    Google Scholar 

  • Gray JE, Holroyd GH, van der Lee FM, Bahrami AR, Sijmons PC, Woodward FI, Schuch W, Hetherington AM (2000) The HIC signalling pathway links CO2 perception to stomatal development. Nature 408:713-716

    Article  PubMed  CAS  Google Scholar 

  • Hall AE, Allen LH Jr (1993) Designing cultivars for the climatic conditions of the next century. In: Buxton DR, Shibles R, Forsberg RA, Blad BL, Asay KH, Paulsen GM, Wilson RF (eds) International crop science. Crop Science Society of America, Madison, WI, pp 291-297

    Google Scholar 

  • Hawker JS, Jenner CF (1993) High temperature effects on the activity of enzymes in the committed pathway of starch synthesis in developing wheat endosperm. Aust J Plant Physiol 20:197-200

    Article  CAS  Google Scholar 

  • Heagle AS, Key LW (1973) Effect of ozone on the wheat stem rust fungus. Phytopathology 63:397-400

    Article  CAS  Google Scholar 

  • Heath RL, Taylor GE (1997) Physiological processes affecting plant responses to ozone exposure. In: Sandermann H, Wellburn AR, Heath RL (eds) Forest decline and ozone: a comparison of controlled chamber and field experiments. Springer, New York, pp 317-368

    Google Scholar 

  • Hiscock K, Southward A, Tittley I, Hawkins S (2004) Effects of changing temperature on benthic marine life in Britain and Ireland. Aquat Conserv: Mar Freshw Ecosyst 14:333-362

    Article  Google Scholar 

  • Hocking PJ, Meyer CP (1991) Carbon dioxide enrichment decreases critical nitrate and nitrogen concentrations in wheat. J Plant Nutr 14:571-584

    Article  Google Scholar 

  • Horie T, Baker JT, Nakagawa H, Matsui T (2000) Crop ecosystem responses to climatic change: rice. In: Reddy KR, Hodges HF (eds) Climate change and global crop productivity. CAB International, Wallingford, pp 81-106

    Google Scholar 

  • IPCC (2007) Climate change 2007: Synthesis report. Contribution of Working Groups to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change

    Google Scholar 

  • Jenner CF (1991a) Effects of exposure of wheat ears to high temperature on dry matter accumulation and carbohydrate metabolism in the grain of two cultivars. I. Immediate response. Aust J Plant Physiol 18:165-177

    Article  CAS  Google Scholar 

  • Jenner CF (1991b) Effect of exposure of wheat ears to high temperature on dry matter accumulation and carbohydrate metabolism in the grain of two wheat cultivars. II. Carry over effects. Aust J Plant Physiol 18:179-190

    Article  CAS  Google Scholar 

  • Kangasjärvi J, Talvinen J, Utriainen M, Karjalainen R (1994) Plant defense systems induced by ozone. Plant Cell Environ 17:783-794

    Article  Google Scholar 

  • Kaplan A, Helman Y, Tchernov D, Reinhold L (2001) Acclimation of photosynthetic microorganisms to changing ambient CO2 concentration. Proc Natl Acad Sci USA 98:4817-4818

    Article  PubMed  CAS  Google Scholar 

  • Karim Z, Hussain SG, Ahmed M (1996) Assessing impacts of climatic variations on food grain production in Bangladesh. Water Air Soil Poll 92:53-62

    CAS  Google Scholar 

  • Kee SC, Nobel PS (1985) Fatty acid composition of chlorenchyma membrane fractions from three desert succulents grown at moderate and high temperature. Biochim Biophys Acta 820:100-106

    Article  CAS  Google Scholar 

  • Kickert RN, Krupa SV (1991) Modeling plant response to tropospheric ozone: A critical review. Environ Poll 70:271-383

    Article  CAS  Google Scholar 

  • Kim HY, Lieffering M, Kobayashi K, Okada M, Miura S (2003) Seasonal changes in the effects of elevated CO2 on rice at three levels of nitrogen supply: A free air CO2 enrichment (FACE) experiment. Global Change Biol 9:826-837

    Article  Google Scholar 

  • Krishnan P, Swain DK, Bhaskar BC, Nayak SK, Dash RN (2007) Impact of elevated CO2 and temperature on rice yield and methods of adaptation as valuated by crop simulation studies. Agric Ecosys Environ 122:233-242

    Article  Google Scholar 

  • Krupa S, Kickert RN (1993) The effects of elevated ultraviolet (UV)-B radiation on agricultural production. Report submitted to the Formal Commission on Protecting the Earth’s Atmosphere of the German Parliament, Bonn, Germany, p 432

    Google Scholar 

  • Krupa S, McGrath MT, Andersen CP, Booker FL, Burkey KO, Chappelka AH, Chevone BI, Pell EJ, Zilinskas BA (2000) Ambient ozone and plant health. Plant Dis 85:4-12

    Article  Google Scholar 

  • Kunst L, Browse J, Somerville C (1989) Enhanced thermal tolerance in a mutant of Arabidopsis deficient in palmitic acid unsaturation. Plant Physiol 91:401-408

    Google Scholar 

  • Leakey ADB, Bernacchi CJ, Dohleman FG, Ort DR, Long SP (2004) Will photosynthesis of maize (Zea mays) in the US Corn Belt increase in future [CO2] rich atmosphere? An analysis of diurnal courses of CO2 uptake under free-air concentration enrichment (FACE). Global Change Biol 10:951-962

    Google Scholar 

  • Lee PC, Bochner BR, Ames BN (1983) A heat shock stress and cell oxidation. Proc Nat Acad Sci USA 80:7496-7500

    Article  PubMed  CAS  Google Scholar 

  • Leegood RC, Sharkey TD, von Caemmerer S (eds) (2000) Photosynthesis: physiology and metabolism, advances in photosynthesis and respiration, vol. 9 (series editor, Govindjee). Springer, Dordrecht

    Google Scholar 

  • Mahan JR, Burke JJ, Orzech KA (1987) The ‘Thermal Kinetic Window’ as an indicator of optimum plant temperature. Plant Physiol 82:518-522

    Google Scholar 

  • Mall RK, Aggarwal PK (2002) Climate change and rice yields in diverse agro-environments of India: evaluation of impact assessment models. Clim Change 52:315-330

    Article  Google Scholar 

  • Manning W, von Tiedemann A (1995) Climate change: potential effects of increased atmospheric carbon dioxide, ozone, and ultraviolet-B radiation on plant disease. Environ Poll 88:219-245

    Article  CAS  Google Scholar 

  • Mishra RK, Singhal GS (1992) Function of photosynthetic apparatus of intact wheat leaves under high light and heat stress and its relationship with thylakoid lipids. Plant Physiol 98:1-6

    Article  PubMed  CAS  Google Scholar 

  • Molnár I, Gáspár L, Sárvári E, Dulai S, Hoffmann B, Molnár-Láng M, Galiba G (2004) Physiological and morphological responses to water stress in Aegilops biuncialis and Triticum aestivum genotypes with differing tolerance to drought. Func Plant Biol 31:1149-1159

    Article  Google Scholar 

  • Morrison DJ, Mallett KI (1996) Silvicultural management of Armillaria root disease in western Canadian forests. Can J Plant Pathol 18:194-199

    Article  Google Scholar 

  • Nagarajan S (2005) Can India produces enough wheat even by 2020? Curr Sci 89:1467-1471

    Google Scholar 

  • Nema KG, Joshi LM (1973) Spot-blotch disease of wheat in relation to host age, temperature and moisture. Indian Phytopathol 26:41-48

    Google Scholar 

  • Pell EJ, Schlagnhaufer CD, Arteca RN (1997) Ozone-induced oxidative stress: mechanisms of action and reaction. Physiol Plant 100:264-273

    Article  CAS  Google Scholar 

  • Peng SB, Huang JL, Sheehy JE, Laza RC, Visperas RM, Zhong X, Centeno GS, Khush GS, Cassman KG (2004) Rice yield decline with higher night temperature from global warming. Proc Natl Acad Sci USA 101:9971-9975

    Article  PubMed  CAS  Google Scholar 

  • Plessi M, Erich FE, Rennenber H, Habermeyer J, Heiser I (2007) Influence of elevated CO2 and ozone concentrations on late blight resistance and growth of potato plants. Environ Exp Bot 60:447-457

    Article  Google Scholar 

  • Polley HW, Johnson HB, Mayeux HS (1994) Increasing CO2: comparative responses of the C4 grass Schizachyrium and grassland invader Prosopis. Ecology 75:976-988

    Article  Google Scholar 

  • Poorter H (1993) Interspecific variation in the growth response of plants to an elevated ambient CO2 concentration. Vegetation 104(105):77-97

    Article  Google Scholar 

  • Raison JK (1986) Alterations in the physical properties and thermal response of membrane lipids: correlations with acclimation to chilly and high temperature. In: St. John JB, Berlin E, Jackson PC (eds) Frontiers of membrane research in agriculture. Rowman and Allanheld, Totoma, NJ, pp 383-401

    Google Scholar 

  • Rane J, Shoran J, Nagarajan S (2000) Heat stress environments and impact on wheat productivity in India: guestimate of losses. Indian Wheat News 6:5-6

    Google Scholar 

  • Rao MV, Koch JR, Davis KR (2000) Ozone: a tool for probing programmed cell death in plants. Plant Mol Biol 44:345-358

    Article  PubMed  CAS  Google Scholar 

  • Rikin A, Dillworth JW, Bergman DK (1993) Correlation between circadian rhythm of resistance to extremes of temperature and changes in fatty acid composition in cotton seedlings. Plant Physiol 101:31-36

    PubMed  CAS  Google Scholar 

  • Runeckles VC, Krupa SV (1994) The impact of UV-B radiation and ozone on terrestrial vegetation. Environ Poll 83:191-213

    Article  CAS  Google Scholar 

  • Samarakoon A, Gifford RM (1996) Elevated CO2 effects on water use and growth of maize in wet and drying soil. Aust J Plant Physiol 23:53-62

    Article  CAS  Google Scholar 

  • Sandermann H (1996) Ozone and plant health. Annu Rev Phytopathol 34:347-366

    Article  PubMed  CAS  Google Scholar 

  • Sandermann H (2000) Ozone/biotic disease interactions: molecular biomarkers as a new experimental tool. Environ Pollut 108:327-332

    Article  PubMed  CAS  Google Scholar 

  • Sandermann H, Ernst D, Heller W, Langebartels C (1998) Ozone: an abiotic elicitor of plant defence reactions. Trends Plant Sci 3:47-50

    Article  Google Scholar 

  • Seneweera S, Ghannoum O, Conroy JP (2001) Root and shoot factors contribute to the effect of drought on photosynthesis and growth of the C4 grass, Panicum coloratum at elevated CO2 partial pressures. Aust J Plant Physiol 28:23-32

    Google Scholar 

  • Senioniti E, Manetos Y, Gavales NA (1986) Co-operative effects of light and temperature on the activity of phosphoenolpyruvate carboxylase from Amaranthus paniculatus. Plant Physiol 82:518-522

    Article  Google Scholar 

  • Sharma RC, Duveiller E (2004) Effect of Helminthosporium leaf blight on performance of timely and late-seeded wheat under optimal and stressed levels of soil fertility and moisture. Field Crops Res 89:205-218

    Article  Google Scholar 

  • Sharma RC, Duveiller E (2006) Spot blotch continues to cause substantial grain yield reductions under resource limited farming conditions. Phytopathol 154:482-488

    Article  Google Scholar 

  • Sharma RC, Duveiller E, Gyawali S, Shrestha SM, Chaudhary NK, Bhatta MR (2004) Resistance to Helminthosporium leaf blight and agronomic performance of spring wheat genotypes of diverse origins. Euphytica 139:33-44

    Article  CAS  Google Scholar 

  • Sharma RC, Ortiz-Ferrara G, Crossa J, Bhatta MR, Sufian MA, Shoran J, Ortiz R (2007) Genetic improvement and stability of wheat grain yield assessed through regional trials in the Eastern Gangetic Plains of South Asia. Proceedings of the International Symposium on Wheat Yield Potential: Challenges to International Wheat Breeding Ciudad Obregón, Sonora, Mexico, 19-24 March 2006, CIMMYT, Mexico, DF

    Google Scholar 

  • Sharma YK, León J, Raskin I, Davis KR (1996) Ozone-induced responses in Arabidopsis thaliana: The role of salicylic acid in the accumulation of defense-related transcripts. Proc Natl Acad Sci USA 93:5099-5104

    Article  PubMed  CAS  Google Scholar 

  • Siddique AB, Hossain MH, Duveiller E, Sharma RC (2006) Progress in wheat resistance to spot blotch in Bangladesh. Phytopathology 154:16-22

    Article  Google Scholar 

  • Singh B, Elmaayar M, Andre P, Bryant CR, Thouez JP (1998) Impacts of a GHG-induced climate change on crop yields: effects of acceleration in maturation, moisture stress and optimal temperature. Clim Change 38:51-86

    Article  Google Scholar 

  • Sionit N, Hellmers H, Strain BR (1980) Growth and yield of wheat under CO2 enrichment and water stress. Crop Sci 20:687-690

    Article  Google Scholar 

  • Sombroek WG, Gommes R (1998) The climate change - agricultural conundrum. In: Bazzaz F, Sombroek W (eds) Global climate change and agricultural production. Wiley, New York, pp 1-14

    Google Scholar 

  • Somerville C, Browse J (1991) Plant lipids, metabolism and membranes. Science 252:80-87

    Article  PubMed  CAS  Google Scholar 

  • Stott PA, Tett SFB, Jones GS, Allen MR, Mitchell JFB, Jenkins G (2000) External control of 20th century temperature by natural and anthropogenic forcing. Science 290:2133-2137

    Article  PubMed  CAS  Google Scholar 

  • Tyree MT, Alexander JD (1993) Plant water relations and the effects of elevated CO2: a review and suggestions for future research. Vegetation 104(105):47-62

    Article  Google Scholar 

  • Upadhyaya A, Davis TD, Larsen MH, Walsen RH, Sankhla M (1990) Uniconazole-induced thermo-tolerance in soybean seedling root tissue. Physiol Plant 79:78-84

    Article  CAS  Google Scholar 

  • Upadhyaya A, Davis TD, Sankhla M (1991) Heat shock tolerance and anti-oxidant activity in moth bean seedlings treated with tetayclasis. Plant Growth Regul 10:215-222

    Article  CAS  Google Scholar 

  • Uprety DC, Garg SC, Tiwari MK, Mitra AP (2000) Crop responses to elevated CO2: technology and research (Indian studies). Global Environ Res 3:155-167

    CAS  Google Scholar 

  • Uprety DC, Dwivedi N, Mohan R, Paswan G (2001) Effect of elevated CO2 concentration on leaf structures of Brassica juncea under water stress. Biol Plant 44:149-152

    Article  Google Scholar 

  • Uprety DC, Dwivedi N, Jain V, Mohan R (2002) Effect of elevated CO2 on the stomatal parameters of rice cultivars. Photosynthetica 40:315-319

    Article  CAS  Google Scholar 

  • Uprety DC, Dwivedi N, Jain V, Mohan R, Saxena DC, Jolly S, Paswan G (2003) Responses of rice varieties to elevated CO2. Biol Plant 46:35-39

    Article  CAS  Google Scholar 

  • Uprety DC, Dwivedi N, Saxena DC, Raj A, Paswan G (2004) Impact of enhanced CO2 concentration on crop growth. In: Proc. Workshop on Agriculture, Forestry and Natural Ecosystem, Bangalore, India, pp 19-22

    Google Scholar 

  • Uprety DC, Abrol YP, Reddy VR (2007) Crop responses to elevated CO2. In: Tandon P, Khatri S, Abrol YP (eds) Biodiversity and its significance. IK International, New Delhi, pp 289-331

    Google Scholar 

  • Volaire F (2003) Seedling survival under drought differs between an annual (Hordeum vulgare) and a perennial (Dactylis glomerata). New Phytol 160:501-510

    Article  Google Scholar 

  • Vu JCV, Baker JT, Pennanen AH, Allen LH Jr, Bowes G, Boote KJ (1998) Elevated CO2 and water deficit effects on photosynthesis, ribulose bisphosphate carboxylase-oxygenase, and carbohydrate metabolism in rice. Physiol Plant 103:327-339

    Article  CAS  Google Scholar 

  • Wardlaw IF (1974) Temperature control of translocation. In: Bielske RL, Ferguson AR, Cresswell MM (eds) Mechanism of regulation of plant growth. Bull Royal Soc, Wellington, pp 533-538

    Google Scholar 

  • Wattal PN (1965) Effect of temperature on the development of the wheat grain. Indian J Plant Physiol 8:145-159

    Google Scholar 

  • Whitmarsh J and Govindjee (1999) The photosynthetic process. In: Singhal GS, Renger G, Irrgang K-D, Sopory S, Govindjee (eds) Concepts in photobiology: photosynthesis and photomorphogenesis. Narosa Publishers/Kluwer, New Delhi/Dordrecht, pp 11-51

    Google Scholar 

  • Wong SC (1979) Elevated atmospheric partial pressure of CO2 and plant growth. Oecologia 44:68-74

    Article  Google Scholar 

  • Yalpani N, Enyedi AJ, Leon J, Raskin I (1994) UV light and ozone stimulate accumulation of salicylic acid, pathogenesis-related proteins and virus resistance in tobacco. Planta 193:372-376

    Article  CAS  Google Scholar 

  • Young KJ, Long SP (2000) Crop ecosystem responses to climatic change: maize and sorghum. In: Reddy KR, Hodges HF (eds) Climate change and global crop productivity. CAB International, London, pp 107-131

    Google Scholar 

  • Ziska LH, Hogan KP, Smith AP, Drake BG (1991) Growth and photosynthetic response of nine tropical species with long term exposure to elevated carbon dioxide. Oecologia 86:383-389

    Article  Google Scholar 

  • Ziska LH, Weerakoon W, Namuco OS, Pamplona R (1996) The influence of nitrogen on the elevated Co2 response in field-grown rice. Aust J Plant Physiol 23:45-52

    Google Scholar 

  • Ziska LH, Sicher RC, Bunce JA (1999) The impact of elevated carbon dioxide on the growth and gas exchange of three C4 species differing in CO2 leak rates. Physiol Plant 105:74-80

    Article  CAS  Google Scholar 

Download references

Acknowledgements

YPA and HD gratefully acknowledge the financial support the from Indian National Science Academy and the Council of Scientific and Industrial Research, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yash P. Abrol .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ahmad, A., Diwan, H., Abrol, Y.P. (2009). Global Climate Change, Stress and Plant Productivity. In: Pareek, A., Sopory, S., Bohnert, H. (eds) Abiotic Stress Adaptation in Plants. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3112-9_23

Download citation

Publish with us

Policies and ethics