Skip to main content

Solid State Detectors for Quality Assurance in Brachytherapy

  • Conference paper
Radiotherapy and Brachytherapy

Abstract

Because of the low energy of photon or beta radioactive sources currently used for modern techniques of brachytherapy, and the high dose gradient existing around them, the dosimeters to be used for quality controls of the sources or absorbed dose measurements should have special characteristics such as an accurate and reproducible response, a low dose response dependence as a function of energy, a high sensitivity under a small volume, a response independent of the dose-rate, etc. Commercial solid state detectors, such as diodes, MOSFETs, EPR-alanine, Gafchromic films, plastic scintillators and radiothermo-luminescent (RTL) dosimeters, can be interesting in the concerned field. After a brief reminder of their principle, a review of their dosimetric advantages and disadvantages is presented. A selection of detectors the best suited for brachy-therapy with examples of use for quality assurance controls or in-vivo dosimetry is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alecu R. and Alecu M. (1999) In vivo rectal dose measurements with diodes to avoid mis-administrations during intracavitaryhigh dose rate brachytherapy for carcinoma of the cervix, Med. Phys. 26, 768–770.

    Article  Google Scholar 

  2. Alva H., Mercado-Uribe H., Rodriguez-Villafuerte M. and Brandan M.E. (2002) The use of a reflective scanner to study radiochromic film response. Phys. Med. Biol. 47, 2925–2933.

    Article  Google Scholar 

  3. Aydarous A.S., Darley P.J. and Charles M.W. (2001) A wide dynamic range, high spatial resolution scanning system for radiochromic dye films. Phys. Med. Biol. 46, 1379–1389.

    Article  Google Scholar 

  4. Bambinek M., Flühs D., Heintz M., Kolanoski H., Wegener D. and Quast U. (1999) Fluorescence 125I applicator. Med. Phys. 26, 2476–2481.

    Article  Google Scholar 

  5. Barthe J. (2001) Electronic dosimeters based on solid state detectors. Nucl. Instrum. Meth. Phys. Res., Sect. B, 184, 158–189.

    Article  ADS  Google Scholar 

  6. Beddar A.S., Mackie T.R. and Attix F.H. (1992) Water-equivalent plastic scintillation detectors for high energy beam dosimetry- 1. Physical characteristics and theoretical considerations. Phys. Med. Biol. 37, 1883–1900.

    Article  Google Scholar 

  7. Butson M.J., Cheung T. and Yu P. (2006) Weak energy dependence of EBT Gafchromic film dose response in the 50 kVp-10 MVp X-ray range. Appl. Radiat. Isotopes. 64, 60–62.

    Article  Google Scholar 

  8. Chui-Tsao S.-T., Duckworth T.L., Patel N.S., Pisch J. and Harrisson L.B. (2004) Verification of Ir-192 near source dosimetry using Gafchromic film. Med. Phys. 31, 201–207.

    Article  Google Scholar 

  9. Clift M.A., Sutton R.A. and Webb D.V. (2000) Water equivalence of plastic organic scintil-lators in megavoltage radiotherapy bremsstrahlung beams. Phys. Med. Biol. 45, 1885–1895.

    Article  Google Scholar 

  10. Cygler J., Saoudi A., Perry G., Morash C. and Choan E. (2006) Feasibility study of using MOSFET detectors for in vivo dosimetry during permanent low-dose rate prostate implants. Radiother. Oncol. 80, 296–301.

    Article  Google Scholar 

  11. Devic S., Seuntjens J., Heygil G., Podgorsak E.B., Soares C.G., Kirov A.S., Ali I., Williamson J. and Elizondo A. (2004) Dosimetric properties of improved Gafchromic films from seven digitizers. Med. Phys. 31, 2392–2401.

    Article  Google Scholar 

  12. Flühs D., Heintz M., Indekämpen F., Wieczorek C., Kolaoski H. and Quast U. (1996) Direct reading measurement of absorbed dose with plastic scintillators –The general concept and applications to ophtalmic plaque dosimetry, Med. Phys. 23, 427–434.

    Article  Google Scholar 

  13. Fusi F., Mercatelli L., Marconi G., Cuttone G. and Romano G. (2004) Optical characterization of radiochromic film by total reflectance and transmittance measurements. Med. Phys. 31, 2147–2154.

    Article  Google Scholar 

  14. Iftimia I., Devlin P.M., Chin L.M., Baron J.M. and Cormack R.A. (2003) GAF film dosi-metry of a tandem of beta-emitting intravascular brachytherapy source train, Med. Phys. 30, 1004–1012.

    Article  Google Scholar 

  15. Marinello G. (2007) Radiothermoluminescent dosimeters and diodes. In “Hanbook of radiotherapy Physics” Eds Mayles P., Rosenwald J.C. and Nahum A. CRC Press-Taylor & Francis Group (London), chapter 16, 303–320.

    Chapter  Google Scholar 

  16. Marinello G., Raynal M., Brulé A.M. and Pierquin B. (1975) Utilisation du fluorure de lithium en dosimétrie clinique. Application á la mesure de la dose délivrée á la région axillaire par l'iridium 192 dans l'endocuriethérapie des cancers du sein. J. Radiol. Elect. 11, 791–796.

    Google Scholar 

  17. McKeever S.W.S. (1985) Thermoluminescence of solids. University Press (New York).

    Google Scholar 

  18. McKeever S.W.S., Moscovitch M. and Townsend P.D. (1995) Thermoluminescence dosi-metry materials: properties and uses. Nuclear Technology Publishing (Asford).

    Google Scholar 

  19. McLaughlin W.L., Boyd A.W., Chadwick K.H., Mc Donald J.C. and Miller A. (1989) Dosimetry for radiation processing. Taylor & Francis (London).

    Google Scholar 

  20. McLaughlin W.L., Chen Y-D. and Soares C.G. (1991) Sensitometry of the response of a new radiochromic film dosimeter to gamma and electron beams. Nucl. Instrum. Nad. Meth. Phys. Res. A 302, 165–176.

    Article  ADS  Google Scholar 

  21. McLaughlin W.L., Al-Shiekley M., Lewis D.F., Kovacs A. and Wojnarovits L. (1996) A radiochromic solid state polymerization. In “Radiation effects on polymers” Eds Clough R.L., O'Donnel J.H. and Shalaby. American Chemical Society (Washington, DC), 152–166.

    Google Scholar 

  22. Meigooni A.S., Sanders M.F., Ibott G.S. and Szeglin S.R. (1997) Dosimetric characteristics of en imporved radiochromic film. Med. Phys. 23, 1883–1886.

    Article  Google Scholar 

  23. Mourtada F.A., Soares C.G., Seltzer S.M. and Lott S.H. (2000) Dosimetry characterization of 32P catheter-based vascular brachytherapy source wire. Med. Phys. 27, 1770–1776.

    Article  Google Scholar 

  24. Olsen K.J., Hansen J.W. and Wille M. (1990) Response of the Alanine radiation dosimeterto high energy photon and electron beams. Phys. Med. Biol. 35, 43–52.

    Article  Google Scholar 

  25. Pai S., Reinstein L.E., Gluckman G., Xu Z. and Weiss T. (1998) The use of improved radio-chromic films for in vivo quality assurance of high dose rate brachytherapy. Med. Phys. 27, 1217–1221.

    Article  Google Scholar 

  26. Perera H., Williamson J.F., Monthofer S.P., Binns W.R., Klarmann J., Fuller G.L. and Wong J.W. (1992) Rapid-two dimensional dose-measurement in brachytherapy using plastic scintillator sheet: linearity, signal-to-noise ratio, and energy response characteristics. Int. J. Radiat. Oncol. Biol. Phys. 23, 1059–1069.

    Article  Google Scholar 

  27. Piermattei A., Azario L., Monaco G., Sorini A. and Arcovito G. (1995) p-type silicon detector for brachytherapy dosimetry. Med. Phys. 22, 835–839.

    Article  Google Scholar 

  28. Soubra M., Cygler J. and Mackay (1994) Evaluation of a dual bias dual metal oxide-silicon semiconductor field effect transistor detector as a radiation dosimeter. Med. Phys. 21, 567–572.

    Article  Google Scholar 

  29. Stevens M.A., Turner J.R., Hugtenburg R.P. and Butler P.H. (1996) High resolution dosimetry using radiochromic film and a document scanner. Phys. Med. Biol. 41, 2357–2365.

    Article  Google Scholar 

  30. Vassy D., Hallil A., Stubbs J., Webster M., Turmel J. and Salazar B. (2005) Verifying correct location of HDR Dwell position in the Mammosite catheter using an integral linear MOSFET dosimeter. Med. Phys. 32, 1962.

    Article  Google Scholar 

  31. Van Dam J. and Marinello G. (2006) Methods for in vivo dosimetry in external radiotherapy ESTRO Booklet No 1 (second edition). Available on : http://www.estro.org.

  32. Wang B., Xu X.G. and Kim C.-H. (2005) Monte-Carlo study of MOSFET dosimeter characteristics: dose dependence on photon energy, direction and dosimeter composition. Radiat. Protect. Dosim., 113, No 1, 40–46.

    Article  Google Scholar 

  33. Yamauchi M., Tominaga T. and Nakamura O. (2004) Gafchromic film dosimetry with a flatbed color scanner for Leksell gamma knife therapy. Med. Phys. 31, 1243–1248.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this paper

Cite this paper

Marinello, G. (2009). Solid State Detectors for Quality Assurance in Brachytherapy. In: Lemoigne, Y., Caner, A. (eds) Radiotherapy and Brachytherapy. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3097-9_20

Download citation

Publish with us

Policies and ethics