Skip to main content

Fundamental Radiobiology and its Application to Radiation Oncology

  • Conference paper
Radiotherapy and Brachytherapy

Abstract

A brief overview of fundamental concepts in radiobiology is provided. The concept of cell survival as ability to retain reproductive integrity is introduced, and critical variables influencing the cell survival curve as a function of absorbed radiation dose are discussed. Application of these concepts to radiation oncology and radiotherapy is then outlined. Examples are provided of clinical studies that can be performed with current high-throughput molecular biology and imaging technology. The type of information derived from these studies and its potential are discussed in the context of radiotherapy trial design, radiotherapy schedule and modality tailoring, and planning of treatment dose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.G. Steel: Basic Clinical Radiobiology, Oxford University Press, 3rd Edition, 2002.

    Google Scholar 

  2. E.L. Alpen: Radiation Biophysics, Prentice-Hall, International Editions, London, 1990.

    Google Scholar 

  3. R.K. Sachs, P. Hahnfeld, D.J. Brenner: The link between low-LET dose-response relations and the underlying kinetics of damage production/repair/misrepair, Int J Radiat Biol., 72(4):351–374, 1997.

    Article  Google Scholar 

  4. M.C. Joiner, B. Marples, P. Lambin, S.C. Short, I. Turesson: Low-dose hypersensitivity: current status and possible mechanisms, Int J Radiat Oncol Biol Phys., 49(2):379–389, 2001.

    Article  Google Scholar 

  5. R.G. Dale: The application of the linear quadratic dose effect equation to fractionated and protracted radiotherapy, Br J Radiol., 58:515–528, 1985.

    Article  Google Scholar 

  6. H.D. Thames, J.H. Hendry: Fractionation in Radiotherapy, Taylor & Francis, London, 1987.

    Google Scholar 

  7. J.F. Fowler: The linear-quadratic formula and progress in radiotherapy, Br J Radiol., 62:679– 694, 1989.

    Article  Google Scholar 

  8. D.J. Brenner, L.R. Hlatky, P.J. Hahnfeldt, E.J. Hall, R.K. Sachs: A convenient extension of the linear-quadratic model to include redistribution and reoxygenation, Int J Radiat Oncol Biol Phys., 32(2):379–390, 1995.

    Article  Google Scholar 

  9. S.M. Bentzen: Steepness of the clinical dose-control curve and variation in the in vitro radiosensitivity of head and neck squamous cell carcinoma, Int J Radiat Biol., 61(3):417–423, 1992.

    Article  Google Scholar 

  10. H. Suit, S. Skates, A. Taghian, P. Okunieff, J.T. Efird: Clinical implications of heterogeneity of tumor response to radiation therapy, Radiother Oncol., 25(4):251–260, 1992.

    Article  Google Scholar 

  11. S. Webb, A.E. Nahum: A model for calculating tumour control probability in radiotherapy including the effects of inhomogeneous distributions of dose and clonogenic cell density, Phys Med Biol., 38(6):653–666, 1993.

    Article  Google Scholar 

  12. D.J. Brenner: Dose, volume, and tumor-control predictions in radiotherapy, Int J Radiat Oncol Biol Phys., 26(1):171–179, 1993.

    Google Scholar 

  13. S.M. Bentzen, H.D. Thames: Tumor volume and local control probability: clinical data and radiobiological interpretation, Int J Radiat Oncol Biol Phys., 1; 36(1):247–251, 1996.

    Article  Google Scholar 

  14. H.R. Withers: The four R's of radiotherapy, Adv Radiat Biol., 5:241–247, 1975.

    Google Scholar 

  15. Tucker SL, Taylor JM: Improved models of tumour cure. Int J Radiat Biol., 70(5):539–553, 1996.

    Article  Google Scholar 

  16. M. Zaider, G.N. Minerbo: Tumour control probability: a formulation applicable to any temporal protocol of dose delivery, Phys Med Biol., 45(2):279–293, 2000.

    Article  Google Scholar 

  17. A. Niemierko, M. Goitein: Calculation of normal tissue complication probability and dose-volume histogram reduction schemes for tissues with a critical element architecture, Radiother Oncol., 20(3):166–176, 1991.

    Article  Google Scholar 

  18. C. Burman, G.J. Kutcher, B. Emami, M. Goitein: Fitting of normal tissue tolerance data to an analytic function, Int J Radiat Oncol Biol Phys., 21(1):123–135, 1991.

    Google Scholar 

  19. A. Jackson, G.J. Kutcher, E.D. Yorke: Probability of radiation-induced complications for normal tissues with parallel architecture subject to non-uniform irradiation. Med Phys., 20(3):613–625, 1993.

    Article  Google Scholar 

  20. S.M. Bentzen, L.V. Johansen, J. Overgaard, H.D. Thames: Clinical radiobiology of squamous-cell carcinoma of the oropharynx, Int J Radiat Oncol Biol Phys., 20(6):1197–1206, 1991.

    Google Scholar 

  21. S. Webb: Optimum parameters in a model for tumour control probability including inter-patient heterogeneity, Phys Med Biol., 39(11):1895–1914, 1994.

    Article  Google Scholar 

  22. J.D. Fenwick: Predicting the radiation control probability of heterogeneous tumour ensembles: data analysis and parameter estimation using a closed-form expression. Phys Med Biol., 43(8):2159–2178, 1998.

    Article  Google Scholar 

  23. C.M. West, S.E. Davidson, S.A. Roberts, R.D. Hunter: The independence of intrinsic radio-sensitivity as a prognostic factor for patient response to radiotherapy of carcinoma of the cervix, Br J Cancer, 76(9):1184–1190, 1997.

    Google Scholar 

  24. T. Bjork-Eriksson, C. West, E. Karlsson, C. Mercke: Tumor radiosensitivity (SF2) is a prognostic factor for local control in head and neck cancer, Int J Radiat Oncol Biol Phys., 46(1):13–19, 2000.

    Article  Google Scholar 

  25. F.M. Buffa, S.E. Davidson, R.D. Hunter, A.E. Nahum, C.M.L. West: Incorporating biologic measurements (SF2, CFE) into a tumor control probability model increases their prognostic significance: A study in cervical carcinoma treated with radiation therapy, Int J Radiat Oncol Biol Phys., 50(5):1113–1122, 2001.

    Google Scholar 

  26. M. Baumann, M. Krause, R. Hill: Exploring the role of cancer stem cells in radioresistance, Nat Rev Cancer, 8(7):545–554, 2008.

    Article  Google Scholar 

  27. S.M. Bentzen: Radiobiological considerations in the design of clinical trials, Radiother Oncol., 32(1):1–11, 1994.

    Article  Google Scholar 

  28. J.H. Kaanders, K.I. Wijffels, H.A. Marres, A.S. Ljungkvist, L.A. Pop, F.J. van den Hoogen, P.C. de Wilde, J. Bussink, J.A. Raleigh, A.J. van der Kogel: Pimonidazole binding and tumor vascularity predict for treatment outcome in head and neck cancer, Cancer Res., 62:7066– 7074, 2002.

    Google Scholar 

  29. F.M. Buffa, S.M. Bentzen, F.M. Daley, S. Dische, M.I. Saunders, P.I. Richman, G.D. Wilson: Molecular marker profiles predict locoregional control of head and neck squamous cell carcinoma in a randomized trial of continuous hyperfractionated accelerated radiotherapy, Clin Cancer Res., 10(11):3745–3754, 2004.

    Article  Google Scholar 

  30. J.G. Eriksen, F.M. Buffa, J. Alsner, T. Steiniche, S.M. Bentzen, J. Overgaard: Molecular profiles as predictive marker for the effect of overall treatment time of radiotherapy in supraglottic larynx squamous cell carcinomas, Radiother Oncol., 72(3):275–282, 2004.

    Article  Google Scholar 

  31. J. Overgaard, J.G. Eriksen, M. Nordsmark, J. Alsner, M.R. Horsman; Danish Head and Neck Cancer Study Group: Plasma osteopontin, hypoxia, and response to the hypoxia sensitiser nimorazole in radiotherapy of head and neck cancer: results from the DAHANCA 5 randomised double-blind placebo-controlled trial, Lancet Oncol., 6(10):757–764, 2005.

    Article  Google Scholar 

  32. J. Akervall: Gene profiling in squamous cell carcinoma of the head and neck, Cancer Metastasis Rev., 24:87–94, 2005.

    Article  Google Scholar 

  33. C.N. Andreassen: Can risk of radiotherapy-induced normal tissue complications be predicted from genetic profiles? Acta Oncol., 44:801–815, 2005.

    Article  Google Scholar 

  34. M. Lobrich and J. Kiefer: Assessing the likelihood of severe side effects in radiotherapy, Int. J. Cancer, 118:2652–2656, 2006.

    Article  Google Scholar 

  35. J.G Eriksen, T. Steiniche, J. Overgaard: The influence of epidermal growth factor receptor and tumor differentiation on the response to accelerated radiotherapy of squamous cell carcinomas of the head and neck in the randomized DAHANCA 6 and 7 study, Radiother. Oncol., 74:93–100, 2005.

    Article  Google Scholar 

  36. S.M. Bentzen, B.M. Atasoy, F.M. Daley, S. Dische, P.I. Richman, M.I. Saunders, K.R. Trott, G.D. Wilson: Epidermal growth factor receptor expression in pretreatment biopsies from head and neck squamous cell carcinoma as a predictive factor for a benefit from accelerated radiation therapy in a randomized controlled trial, J Clin Oncol., 23(24):5560–5567, 2005.

    Article  Google Scholar 

  37. S.M. Bentzen: Dose painting and theragnostic imaging: towards the prescription, planning and delivery of biologically targeted dose distributions in external beam radiation oncology, Cancer Treat Res., 139:41–62, 2008.

    Article  Google Scholar 

  38. M. Baumann, C. Petersen, M. Krause: TCP and NTCP in preclinical and clinical research in Europe, Rays, 30(2):121–126, 2005.

    Google Scholar 

  39. A.J. Chalmers, S.M. Bentzen, F.M. Buffa: A general framework for quantifying the effects of DNA repair inhibitors on radiation sensitivity as a function of dose, Theor Biol Med Model. 4:25, 2007.

    Google Scholar 

  40. G.A. Plataniotis, R.G. Dale: Use of concept of chemotherapy-equivalent biologically effective dose to provide quantitative evaluation of contribution of chemotherapy to local tumor control in chemoradiotherapy cervical cancer trials, Int J Radiat Oncol Biol Phys., 72(5):1538–1543, 2008.

    Google Scholar 

  41. S.M. Bentzen, P.M. Harari, J. Bernier: Exploitable mechanisms for combining drugs with radiation: concepts, achievements and future directions, Nat Clin Pract Oncol., 4(3):172–180, 2007.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this paper

Cite this paper

Buffa, F.M. (2009). Fundamental Radiobiology and its Application to Radiation Oncology. In: Lemoigne, Y., Caner, A. (eds) Radiotherapy and Brachytherapy. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3097-9_1

Download citation

Publish with us

Policies and ethics