Skip to main content

Electrical Systems and Micro-devices Modelization

  • Chapter
  • First Online:
Extended Irreversible Thermodynamics

Abstract

This chapter is devoted to the analysis of electrical phenomena. After establishing the generalised equations for electrical transport, we analyse in the first section the second moments of the current fluctuations in non-equilibrium steady states, and discuss the crossed terms which link fluxes and forces. In the second section, we revisit Onsager’s reciprocal relations and observe that the formalism of extended irreversible thermodynamics (EIT) is closer to Onsager’s original treatment than classical irreversible thermodynamics (CIT), as already mentioned in Box 13.2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anile AM, Muscato O (1995) An improved thermodynamic model for carrier transport in semi-conductors. Phys Rev B 51:16728–16740

    Article  ADS  Google Scholar 

  • Anile AM, Pennisi S (1992) Extended thermodynamics of the Blotekjaer hydrodynamical model for semiconductors. Continuum Mech Thermodyn 4:187–197

    Article  MathSciNet  ADS  Google Scholar 

  • Anile AM, Allegretto W, Ringhofer C (2003) Mathematical problems in semiconductor physics. Lecture Notes in Mathematics, vol 1823. Springer, Berlin

    Google Scholar 

  • Barton G (1979) Some surface effects in the hydrodynamic model of metals. Rep Prog Phys 42:963–1016

    Article  ADS  Google Scholar 

  • Blotekjaer K (1970) Transport equations for electrons in two-valley semiconductors. IEEE Trans Electron Devices 17:38–47

    Article  Google Scholar 

  • Ciancio V, Verhas J (1991) A thermodynamic theory for heat radiation through the atmosphere. J Non-Equilib Thermodyn 16:57–65

    Article  ADS  MATH  Google Scholar 

  • Ciancio V, Restuccia L, Kluitenberg GA (1990) A thermodynamic derivation of equation for dielectric relaxation phenomena in anisotropic polarisable media. J Non-Equilib Thermodyn 15:157–172

    Article  ADS  Google Scholar 

  • De Groot SR, Mazur P (1962) Non-equilibrium Thermodynamics. North-Holland, Amsterdam

    Google Scholar 

  • De Felice LJ (1981) Introduction to Membrane Noise. Plenum, New York

    Google Scholar 

  • Del Castillo LF, Dávalos-Orozco LA, García-Colín LS (1997) Ultrafast dielectric relaxation response of polar liquids. J Chem Phys 106:2348–2354

    Article  ADS  Google Scholar 

  • Dempsey J, Halperin BI (1992) Magnetoplasma excitations in parabolic quantum wells: Hydrodynamic model. Phys Rev B 45:1719–1735

    Article  ADS  Google Scholar 

  • Jou D, Camacho J (1990) On the non-equilibrium thermodynamics of some complex dynamical behaviours. J Phys A 23:4603–4617

    Article  ADS  Google Scholar 

  • Jou D, Bampi F, Morro A (1982) Thermodynamic description of ultrasonic attenuation in metals. J Non-Equilib Thermodyn 7:201–212

    Article  ADS  Google Scholar 

  • Jou D, Ferrer-Suquet F, Pérez-Vicente C (1986) On the nonequilibrium chemical potential of open pores in a membrane. J Chem Phys 85:5314–5316

    Article  ADS  Google Scholar 

  • Junk M, Romano V (2005) Maximum entropy moment system of the semiconductor Boltzmann equation using Kane’s dispersion relation. Cont Mech Thermodyn 17:247–267

    Article  MathSciNet  MATH  Google Scholar 

  • Kivelson D, Keyes T (1972) A unified theory of orientational relaxation. J Chem Phys 57:4599

    Article  ADS  Google Scholar 

  • Krall AN, Trivelpiece AW (1973) Principles of Plasma Physics. McGraw-Hill, New York

    Google Scholar 

  • Llebot JE, Jou D, Casas-Vázquez J (1983), A thermodynamic approach to heat and electrical conduction in solids. Physica A 121:552–562

    Article  ADS  Google Scholar 

  • Romano V (2007) Quantum corrections to the semiclassical hydrodynamical model of semiconductors based on the maximum entropy approach. J Math Phys 48:123504 (24p)

    Google Scholar 

  • Schlesinger MF (1988) Fractal time in condensed matter. Ann Rev Phys Chem 39:269–290

    Article  ADS  Google Scholar 

  • Tokatly IV, Pankratov O (1999) Hydrodynamic theory of an electron gas. Phys Rev B 60:15550–15553

    Article  ADS  Google Scholar 

  • Tremblay A-MS, Vidal F (1982) Fluctuations in dissipative steady state of thin metallic films. Phys Rev B 25:7562–7576

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Jou, D., Casas-Vázquez, J., Lebon, G. (2010). Electrical Systems and Micro-devices Modelization. In: Extended Irreversible Thermodynamics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3074-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-3074-0_14

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-3073-3

  • Online ISBN: 978-90-481-3074-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics