Skip to main content

Contribution of Copper Nqr Spectroscopy to the Geological Studies of Complex Sulfides and Oxides

  • Conference paper
Explosives Detection Using Magnetic and Nuclear Resonance Techniques

Many energy-related areas such as nuclear waste isolation, continental drilling, fossil fuel recovery, and geothermal energy are directly associated with an in-depth understanding of the earth sciences. Of particular interest is the development of analytical techniques which can augment existing ones in developing a better understanding of mineralogy.

Presently, available instrumental techniques for studying mineralogical problems such as x-ray, electron and neutron diffraction, nuclear gamma resonance (NGR or Mössbauer spectroscopy), electron microscopy and transmission electron microscopy have inherent limitations. These manifest themselves in being unable to characterize mineral samples fully, especially if they are polycrystalline.

Nuclear Quadrupole Resonance (NQR) spectroscopy offers the potential for being able to obtain accurate high resolution spectra. These can then be interpreted to give structural information which can be related to local electronic structure, atomic arrangement, order/disorder phenomena, and crystal phase transformation. In addition, internal dynamics (ionic diffusion, metallic behavior, rotations, and so on) in the solid state can be studied. Furthermore, since NQR data are sensitive to changes in temperature and pressure, there is the possibility of obtaining stress/strain information.

As applied to mineralogical and geological problems, NQR can also provide additional information, for example: chemical activity of minerals (genetic and technological aspects) at different hydrothermal conditions, the studies of impurity configurations in ore minerals and their distribution in crystal lattice, and other.

This chapter highlights some NQR studies in copper sulfides, which demonstrate how NQR method can contribute to our understanding of geological problems. Examples are taken primarily from author's investigate groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Marfunin, A.S.: Physics of Minerals and Inorganic Materials: An Introduction. Springer-Verlag, Berlin (1979) [English translation of Russian original edition: Publishing House Nedra, Moscow, USSR (1974)]

    Google Scholar 

  2. Vaughan, D.J., Craig, J.R.: Mineral Chemistry of Metal Sulfides. Cambridge University Press, Cambridge, England (1978)

    Google Scholar 

  3. Ginsburg, A.I., Kuz'min, V.I., Sidorenko, G.S.: Mineralogical Studies in Geological Survey. Publishing House Nauka, Moscow, USSR (1981)

    Google Scholar 

  4. Izoitko, V.M.: Technological Mineralogy and Estimation of Ore. Publishing House Nauka, St. Petersburg, Russia (1997)

    Google Scholar 

  5. Abrikosov, N.K., Bankina, V.F., Poretskaya, L.V., Skudnova, E.V., Chizhevskaya, S.N.: Semiconducting Chalcogenides and Their Alloys. Publishing House Nauka, Moscow, USSR (1975)

    Google Scholar 

  6. Zakery, A., Elliot, S.R.: Optical properties and applications of chalcogenide glasses: a review. J. Non-Cryst. Solids 330, 1–12 (2003), and reference therein

    CAS  Google Scholar 

  7. Korago, A.A.: Introduction to a Biomineralogy. Publishing House Nedra, St. Petersburg, Russia (1992)

    Google Scholar 

  8. Yushkin, N.P., Askhabov, A.M., and Rakin, V.I.: Nanomineralogy (ultra- and microdispersed mineral states). Publishing House Nauka, St. Petersburg, Russia (2005)

    Google Scholar 

  9. Pound, R.V.: Nuclear electric quadrupole interactions in crystals. Phys. Rev. 79, 685–702 (1950)

    CAS  Google Scholar 

  10. Dehmelt, H.G., Kruger, H.: Kernquadrupolfrequenzen in festem dichloräthylen. Naturwiss. 37, 111–112 (1950)

    CAS  Google Scholar 

  11. Das, T.P., Hahn, E.L.: Nuclear Quadrupole Resonance Spectroscopy. In: Seitz, F., Turnbull D. (eds.) Supplement 1 of Solid State Physics. Academic Press, New York (1958)

    Google Scholar 

  12. Abragam, A.: Principles of Nuclear Magnetism. Oxford University Press, Oxford (1961)

    Google Scholar 

  13. Lucken, E.A.C.: Nuclear Quadrupole Coupling Constants. Academic Press, London/ New York (1969)

    Google Scholar 

  14. Schempp, E., Bray, P.J.: Nuclear quadrupole resonance spectroscopy. In: D. Henderson (ed.) Physical Chemistry, An Advanced Treatise, pp. 521–632. Academic Press (1970)

    Google Scholar 

  15. Semin, G.K., Babushkina, T.A., Yakobson, G.G.: Nuclear quadrupole resonance in chemistry. Wiley, New York (1975) [English translation of Russian original edition: Publishing House Khimiya, Leningrad, USSR (1972)]

    Google Scholar 

  16. Grechishkin, V.S.: Nuclear quadrupole interactions in solids. Publishing House Nauka, Moscow, USSR (1973)

    Google Scholar 

  17. Safin, I.A., Osokin, D.Ya.: Nuclear quadrupole resonance in nitrogen compounds. Publishing House Nauka, Moscow, USSR (1977)

    Google Scholar 

  18. Fukushima, E., Roeder S.B.W.: Experimental Pulse NMR — A Nuts and Bolts Approach. Addison-Wesley, MA (1981)

    Google Scholar 

  19. Bouznik, V.M.: Nuclear Resonance in Ionic Crystals. Publishing House Nauka, Novosibirsk, USSR (1981)

    Google Scholar 

  20. Buslaev, Yu.A., Kravcenko, E.A., Kolditz, L.: Nuclear quadrupole resonance in inorganic chemistry. Coord. Chem. Rev. 82, 9–231 (1987)

    Google Scholar 

  21. Slichter, C.P.: Principles of Magnetic Resonance, 3rd ed. Springer-Verlag, Heidelberg (1989)

    Google Scholar 

  22. Kasperovich, V.S., Shelyapina, M.G.: Nuclear quadrupole resonance. In: Chizhik, V.I. et al. (eds.) Quantum Radiophysics, pp. 446–539. Publishing House of St. Petersburg State University, St. Petersburg, Russia (2004)

    Google Scholar 

  23. Pen'kov, I.N., Safin, I.A.: Application of nuclear quadrupole resonance in study of minerals. Izv. Akad. Nauk SSSR (Geol. Ser) 12, 41–52 (1966)

    Google Scholar 

  24. Pen'kov, I.N., Safin, I.A.: Application of nuclear quadrupole resonance in study of minerals. Int. Geol. Rev. 9, 793–801 (1967)

    Google Scholar 

  25. Wendling, E.: La resonance quadrupolaire nucleaire (RQN) et ses applicasions en chimie minerale. Bull. Soc. Chim. France 1, 181–190 (1968)

    Google Scholar 

  26. Schultz, H.D., Karr, C.: Quantitative aspects of nuclear quadrupole resonance spectro-metry of inorganics and minerals. Anal. Chem. 41, 661–664 (1969)

    CAS  Google Scholar 

  27. Pen'kov, I.N.: The nature of small structural impurities in some chalcogenides of As, Sb and Bi by data of nuclear quadrupole resonance. Geokhimiya [now Geochem. Int.] 6, 731–742 (1971)

    Google Scholar 

  28. Marino, R.A., Wenk, H.R., Apps, J.A., Klainer, S.M.: Proposed applications of NQR techniques to the geosciencies. J. Mol. Struct. 58, 445–457 (1980)

    CAS  Google Scholar 

  29. Abdullin, R.S., Kal'chev, V.P., and Pen'kov, I.N.: Investigation of copper minerals by NQR: crystallochemistry, electronic structure, lattice dynamics. Phys. Chem. Miner. 14, 258–263 (1987)

    CAS  Google Scholar 

  30. Kaufmann, E.N., Vianden, R.J.: The electric field gradient in non-cubic metals. Rev. Mod. Phys. 51, 161–214 (1979)

    CAS  Google Scholar 

  31. Goble, R.J.: The relationship between crystal structure, bonding and cell dimensions in the copper sulfides. Can. Miner. 23, 61–76 (1985)

    CAS  Google Scholar 

  32. Gablina, I.F.: Copper sulfides as indicators of the ore-forming environment. Dokl. RAS, Earth Science Sect. 356, 657–661 (1997) [English translation: Transactions RAS, 357, 1133–1137 (1997)]

    CAS  Google Scholar 

  33. Abdullin, R.S., Kal'chev, V.P., Pen'kov, I.N.: 63Cu NQR spectra in low-temperature chalcocite, Cu2S. Zapiski RMO 1, 99–103 (1988)

    Google Scholar 

  34. Safonov, A.N., Pogorel'tsev, A.I., Matukhin, V.L., Gablina, I.F.: Cu NQR spectra and electroconductivity in CuM2-xS compounds. Izv. Vyssh. Uchebn. Zavad., (Energetic problems ser.) 1–2, 100–102 (2006)

    Google Scholar 

  35. Evans, H.T.: Structure of low chalcocite. Nature (London), Phys. Sci. 232, 69–70 (1971)

    CAS  Google Scholar 

  36. Evans, H.T.: Djurleite (Cu1,94S) and chalcocite (Cu2S) new structural studies. Science 203, 356–358 (1979)

    CAS  Google Scholar 

  37. Evans, H.T.: The crystal structure of low chalcocite and djurleite. Z Kristallog 150, 299–320 (1979)

    CAS  Google Scholar 

  38. Abdullin, R.S., Kal'chev, V.P., Pen'kov, I.N.: 63,65Cu NQR in covelline, CuS. Dokl. Akad. Nauk SSSR [Sov. Phys.—Dokl.] 294, 1439–1441 (1987)

    CAS  Google Scholar 

  39. Itoh, Y., Hayashi, A., Yamagata, H., Matsumura, M., Koga, K., Ueda, Y.: Cu NMR and NQR study of CuS. J. Phys. Soc. Japan 65, 1953–1956 (1996)

    CAS  Google Scholar 

  40. Gainov, R.R., Dooglav, A.V., Pen'kov, I.N., Mukhamedshin, I.R., Mozgova, N.N., Evlampiev, A.V., Bryzgalov, I.A.: Phase transition and anomalous electronic behavior in layered dichalcogenide CuS (covellite) probed by NQR. Cornell University Library. http://arxiv.org/abs/0809.0560. Accessed 3 September 2008.

  41. Anashkin, V.N., Kalinina, T.A., Matukhin, V.L., Pen'kov, I.N., Safin, I.A.: NQR spectra of 63,65Cu in coexisting covelline (CuS) and geerite (Cu1,6S). Proceedings RMS 5, 59–63 (1994)

    Google Scholar 

  42. Kal'chev, V.P., Abdullin, R.S., Pen'kov, I.N.: Nuclear magnetic resonance of 63,65Cu in local fields in antiferromagnet CuFeS2. Sov. Phys. Solid State 21, 1801–1803 (1979) [English translation from Fiz Tverd Tela 21, 3132–3134 (1979)]

    Google Scholar 

  43. Abdullin, R.S., Kal'chev, V.P., Pen'kov, I.N.: Nuclear magnetic resonance of 63,65Cu in local fields in cubanite CuFe2S3. Fiz. Tverd. Tela 22, 2862–2864 (1980)

    CAS  Google Scholar 

  44. Gainov, R.R., Dooglav, A.V., Pen'kov, I.N.: Evidence for low-temperature internal dynamics in Cu12As4S13 according to copper NQR and nuclear relaxation. Solid State Commun. 140, 544–548 (2006)

    CAS  Google Scholar 

  45. Gainov, R.R., Dooglav, A.V., Pen'kov, I.N., Mukhamedshin, I.R., Savinkov, A.V., Mozgova, N.N.: Copper valence, structural separation and lattice dynamics in tennantite (fahlore): NMR, NQR and SQUID studies. Phys. Chem. Miner. 35, 37–48 (2008)

    CAS  Google Scholar 

  46. Pen'kov, I.N., Abdullin, R.S., Yunusov, N.B., Togulev, N.V.: 63,65Cu and 209Bi nuclear quadrupole resonance in wittichenite, Cu3BiS3. Izv. Akad. Nauk SSSR Ser. Fiz. [Bull. Acad. Sci. USSR, Phys. Ser.] 42, 2104–2109 (1978)

    CAS  Google Scholar 

  47. Abdullin, R.S., Pen'kov, I.N., Yunusov, N.B.: Nuclear quadrupole interactions in semiconductors CuMO2. Izv. Akad. Nauk SSSR Ser. Fiz. [Bull. Acad. Sci. USSR, Phys. Ser.] 45, 1787–1791 (1981)

    CAS  Google Scholar 

  48. Pearce, C.I., Pattrick, R.A.D., Vaughan, D.J.: Electrical and magnetic properties of sulfides. Rev. Miner. Geochem. 61, 127–180 (2006)

    CAS  Google Scholar 

  49. Berger, R., Bucur, R.V.: Potentiometric measurements of copper diffusion in polycrystalline chalcocite, chalcopyrite and bornite. Solid State Ionics 89, 269–278 (1996)

    CAS  Google Scholar 

  50. Winter, J.: Magnetic Resonance in Metals. Clarendon Press, Oxford, England (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this paper

Cite this paper

Gainov, R.R. et al. (2009). Contribution of Copper Nqr Spectroscopy to the Geological Studies of Complex Sulfides and Oxides. In: Fraissard, J., Lapina, O. (eds) Explosives Detection Using Magnetic and Nuclear Resonance Techniques. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3062-7_17

Download citation

Publish with us

Policies and ethics