Skip to main content

The essential features of nitrogen-14 Nuclear Quadrupole Resonance, a new tool based on density matrix calculations is proposed. After a brief review of the density matrix theory, it is demonstrated that, for each of the three NQR transitions, the (3,3) density matrix can be reduced to a (2,2) matrix, evidently easier to handle. (2,2) rotation matrices are defined for predicting, in a straightforward manner, the system evolution under a rf pulse. The first example treated by this methodology concerns nutation experiments (evolution of the signal amplitude as a function of the pulse length) and it is shown that the NMR (Nuclear Magnetic Resonance) flip angle, in the case of powder samples, should be substituted by a pseudo flip angle which is no longer proportional to the pulse length. Still for powder samples, it is demonstrated that, in NQR, data averaging continuously improves when shortening the repetition time. Finally it has been possible to define proper phase cycles in view of measuring relaxation times (T1 and T2) by a two-pulse sequence. In all cases, experimental verifications were performed in order to assess this methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Smith JAS, Nuclear quadrupole resonance spectroscopy. General principles. J Chem Ed 48, 39–48 (1971)

    Article  CAS  Google Scholar 

  2. Hiblot N, Cordier B, Ferrari M, Retournard A, Grandclaude D, Bedet J, Leclerc S, Canet D, A fully homemade 14N quadrupole resonance spectrometer. C.R. Chimie 11, 568 (2008)

    Article  CAS  Google Scholar 

  3. Slichter CP, Principles of Magnetic Resonance. Springer, Berlin (1978)

    Book  Google Scholar 

  4. Bloom M, Burnell EE, de Lange CA, Density matrix methods in NMR. In: NMR of Ordered Liquids, edited by Burnell EE, de Lange CA, Kluwer, Dordrecht (2003)

    Google Scholar 

  5. Jeener J, Superoperators in magnetic resonance. Adv Magn Reson 10, 1–38 (1982)

    Article  CAS  Google Scholar 

  6. Canet D, Merlat L, Cordier B, Grandclaude D, Retournard A, Ferrari M, 14N pulsed nuclear quadrupolar resonance. 2. Effect of a single radio-frequency pulse in the general case. Molec Phys 104, 1391–1399 (2006)

    Article  CAS  Google Scholar 

  7. Miller JB, Suits BN, Garroway AN, Circularly polarized RF magnetic fields for spin-1 NQR. J Magn Reson 151, 228–234 (2001)

    Article  CAS  Google Scholar 

  8. Lee YK, Spin-1 Nuclear quadrupole resonance theory with comparisons to nuclear magnetic resonance. Conc Magn Reson 14, 155–171 (2002)

    Article  CAS  Google Scholar 

  9. Prescott DW, Miller JB, Tourigny C, Sauer KL, Nuclear quadrupole resonance single-pulse spin echoes. J Magn Reson 194, 1–7 (2008)

    Article  CAS  Google Scholar 

  10. Suits BH, Garroway AN, Miller JB, Sauer KL, 14N magnetic resonance for materials detection in the field. Solid State Nucl Magn Reson 24, 123–136 (2003)

    Article  CAS  Google Scholar 

  11. Youlin X, Chahohui Y, NQR spectroscopy of powder sample with I = 1 and 3/2 (I). Prog Natural Sci 6, 284–292 (1996)

    CAS  Google Scholar 

  12. Bloom M, Hahn EL, Herzog B, Free magnetic induction in nuclear quadrupole resonance. Phys Rev 97, 1699–1709 (1955)

    Article  CAS  Google Scholar 

  13. Vega S, Theory of T1 relaxation measurements in pure nuclear quadrupole resonance for spins I=1. J Chem Phys 61, 1093–1100 (1974)

    Article  CAS  Google Scholar 

  14. Pratt JC, Watton A, Zero-field pulsed response and dipolar couplings in systems of spin I=1 nuclei. J Chem Soc Faraday Trans 2, 83, 2261–2269 (1987)

    Article  Google Scholar 

  15. Krishnan MS, Temme FP, Sanctuary BC, Theory of pulses in nuclear quadrupole resonance spectroscopy. Molec Phys 78, 1385–1404 (1993)

    Article  CAS  Google Scholar 

  16. Rudakov TN, Mikhaltsevitch, Flexman JH, Modified steady-state free precession pulse sequences for the detection of pure nuclear quadrupole resonance. Solid State Nucl Magn Reson 25, 94–98 (2004)

    Article  CAS  Google Scholar 

  17. Cordier B, Grandclaude D, Retournard A, Merlat L, Canet D, 14N pulsed nuclear quadrupole resonance 1 Nutation experiments in the case of an axially symmetric electric field gradient tensor. Molec Phys 103, 2593–2598 (2005)

    Article  CAS  Google Scholar 

  18. Ferrari M, Hiblot N, Retournard A, Canet D, 14N pulsed nuclear quadrupole resonance 3 Effect of a pulse train. Optimal conditions for data averaging. Molec Phys 105, 3005– 3012 (2007)

    Article  CAS  Google Scholar 

  19. Ernst RR, Sensitivity Enhancement in Magnetic Resonance. Adv Magn Reson 2, 1–135 (1966)

    Article  CAS  Google Scholar 

  20. Ferrari M, Canet D, 14N pulsed nuclear quadrupole resonance 4 Two-pulse sequences for the determination of T1 and T2 relaxation times. Molec Phys (submitted) (2008)

    Google Scholar 

  21. Rudakov TN, Mikhaltseitch VT, Spin locking spin echo in nitrogen-14 quadrupolar spin-system with axially symmetric electric field gradient tensor. Chem Phys Lett 363, 1–6 (2002)

    Article  CAS  Google Scholar 

  22. Petersen G, Bray PJ, 14N nuclear quadrupole resonance and relaxation measurements of sodium nitrite. J Chem Phys 64, 522–530 (1976)

    Article  CAS  Google Scholar 

  23. Bodenhausen G, Freeman R, Turner DL, Suppression of artifacts in two-dimensional J spectroscopy. J Magn Reson 27, 511–514 (1977)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this paper

Cite this paper

Canet, D., Ferrari, M. (2009). Fundamentals of Pulsed Nitrogen-14 Quadrupole Resonance. In: Fraissard, J., Lapina, O. (eds) Explosives Detection Using Magnetic and Nuclear Resonance Techniques. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3062-7_1

Download citation

Publish with us

Policies and ethics