Skip to main content

Power Devices

  • Chapter
  • First Online:
POWER/HVMOS Devices Compact Modeling

Abstract

Main problems encountered in modelling of high power semiconductor devices are discussed in this paper. Unipolar and bipolar device properties are compared and the problems introduced by high time constant values related to carrier diffusion phenomena in the large base are explained. Traditional and novel concepts of power device modelling and simulation are presented. A new distributed model of power diode that can be integrated into a SPICE-based circuit simulator is described. Together with the existing power MOSFET macromodel, the presented approach can facilitate the design process of power electronic circuits. In the future, distributed models for IGBT and BJT will be added.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Napieralski, M. Napieralska, Polowe półprzewodnikowe przyrza̧dy dużej mocy (Wydawnictwa Naukowo-Techniczne, Warszawa, 1995)

    Google Scholar 

  2. V. Benda, J. Gowar, D.A. Grant, Power Semiconductor Devices: Theory and Applications (Wiley, Chichester, 1999)

    Google Scholar 

  3. M. Janicki, D. Makowski, P. Kȩdziora, Ł. Starzak, G. Jabłoński, and S. Bek, Improvement of PFC boost converter energy performance using silicon carbide diode, in: Proceedings of the International Conference Mixed Design of Integrated Circuits and Systems MIXDES (Gdynia, Poland, 2006), pp. 615–618

    Google Scholar 

  4. M.M. Hernando, A. Fernandez, J. Garcia, D.G. Lamar, M. Rascon, Comparing Si and SiC diode performance in commercial AC-to-DC rectifiers with power-factor correction. IEEE Trans. Ind. Electron. 53(2), 705–707 (2006)

    Article  Google Scholar 

  5. Ph. Leturcq, J. Gaubert, A. Napieralski, Z. Khatir, Simulation sur microcalculateur de l’ouverture des thyristors GTO, Revue Générale de l’Electricité 1, 40–48 (1990)

    Google Scholar 

  6. M. Turowski, A. Napieralski, Two-dimensional analysis of GTO switching under the influence of external circuit, IEE Proc. Circuits Devices Syst 141(6), 483–488 (1994)

    Article  Google Scholar 

  7. A. Napieralski, M. Napieralska, M. Grecki, Computer laboratory for CAD of power integrated circuits, in: Computer-Aided Design and Computer-Aided Engineering in Electronic Engineering Education, ed. by A. Filipkowski (Publishing House of the Warsaw University of Technology, Warszawa, 1996), pp. 135–184

    Google Scholar 

  8. R. Maimouni, M. Belabadia, P. Rossel, H. Tranduc, D. Allain, C.E. Cordonnier, M. Napieralska, J. Costa Freire, Modèle SPICE du transistor V. DMOS pour circuits de commutations, in: L’Electronique de Puissance du Futur (Bordeaux, France, 1988)

    Google Scholar 

  9. R. Maimouni, D. Allain, M. Napieralska, H. Tranduc, P. Rossel, and C.E. Cordonnier, Model library for power MOSFETS in switching circuits and converters, in: Mediterranean Electrotechnical Conference MELECON (Lisbon, Portugal, 1989)

    Google Scholar 

  10. R. Maimouni, P. Rossel, D. Allain, M. Napieralska, H. Tranduc, C.E. Cordonnier, Modèle “universel” du transistor MOS de puissance pour le logiciel SPICE, in: Journées d’Etudes S.E.E. “Simulation en Electronique de Puissance du Composant au Système” (Marseille, France, 1989)

    Google Scholar 

  11. R. Maimouni, P. Rossel, D. Allain, M. Napieralska, H. Tranduc, C.E. Cordonnier, Modèle universel du transistor MOS de puissance pour le logiciel SPICE. Revue Générale de l’Electricité 1, 49–59 (1990)

    Google Scholar 

  12. M. Napieralska, H. Tranduc, P. Rossel, C.E. Cordonnier, Bibliothèque de transistors MOS de puissance dans le couplage des logiciels HyperCard et Spice, in: L’Electronique de Puissance du Futur (Toulouse, France, 1990)

    Google Scholar 

  13. M. Napieralska, H. Tranduc, C.E. Cordonnier, J.P. Berry, P. Rossel, Power MOSFET’s library builder for switching circuits simulation and design, in: Symposium on Materials and Devices for Power Electronics MADEP (Florence, Italy, 1991)

    Google Scholar 

  14. M. Napieralska, Modélisation du transistor V.DMOS pour simulation de circuits en électronique de puissance, Ph.D. thesis, INSA, Toulouse, 1991

    Google Scholar 

  15. K. Djellabi, M. Napieralska, H. Tranduc, P. Rossel, K. Kassmi, Modèles du transistor MOS de puissance. Revue Générale de l’Electricité 6, 8–16 (1992)

    Google Scholar 

  16. M. Turowski, Dwuwymiarowe modelowanie półprzewodnikowych przyrza̧dów dużej mocy, Ph.D. thesis, Technical University of Lodz, Łódź, 1992

    Google Scholar 

  17. M. Grecki, Dwuwymiarowe modelowanie bipolarnych i unipolarnych struktur półprzewodnikowych, Ph.D. thesis, Technical University of Lodz, Łódź, 1995

    Google Scholar 

  18. M. Grecki, M. Turowski, A. Napieralski, 2-D analysis of more than one semiconductor devices together with external circuit, in: Proceedings of 5th IEE International Conference on Power Electronics and Variable-Speed Drives PEVD, London, United Kingdom, 1994, pp. 441–446

    Google Scholar 

  19. M. Grecki, G. Jabłoński, A. Napieralski, MOPS – parallel environment for simulation of electronic circuits using physical models of semiconductor devices, in: 4th European PVM/MPI Users’ Group Meeting, Cracow, Poland, 1997, pp. 478–485

    Google Scholar 

  20. G. Jabłoński, Komputerowa analiza układów elektronicznych z zastosowaniem wielowymiarowych modeli fizycznych przyrza̧dów półprzewodnikowych mocy, Ph.D. thesis, Technical University of Lodz, Łódź, 1999

    Google Scholar 

  21. M. Grecki, G. Jabłoński, A. Napieralski, Transient temperature evaluation during switching process in IGBT transistor, in: Proceedings of 4th International Seminar on Power Semiconductors ISPS, Prague, Czech Republic, 1998, pp. 119–124

    Google Scholar 

  22. M. Janicki, Thermal Modelling of Semiconductor Structures with Special Consideration of Inverse Problem Methods for Parameter Estimation, Ph.D. thesis, Technical University of Lodz, Łódź, 1999

    Google Scholar 

  23. M. Furmańczyk, Elektrotermiczna symulacja układów VLSI ze szczególnym uwzglȩdnieniem integracji w środowisku projektowania, Ph.D. thesis, Technical University of Lodz, Łódź, 1999

    Google Scholar 

  24. M. Janicki, M. Zubert, A. Napieralski, Application of inverse problem algorithms for integrated circuit temperature estimation. Microelectron. J. 30(11), 1099–1107 (1999)

    Article  Google Scholar 

  25. M. Janicki, G. De Mey, A. Napieralski, Transient thermal analysis of multilayered structures using Green’s functions. Microelectron. Reliability 42(7), 1059–1064 (2002)

    Article  Google Scholar 

  26. M. Janicki, G. De Mey, A. Napieralski, Application of Green’s functions for analysis of transient thermal states in electronic circuits. Microelectron. J. 33(9), 733–738 (2002)

    Article  Google Scholar 

  27. Ł. Starzak, M. Zubert, A. Napieralski, P. Austin, G. Bonnet, Th. Bordignon, M. Marmouget, J.-L. Sanchez, Physical power diode model and its implementation in Saber environment, in: Proceedings of the 8th International Conference Mixed Design of Integrated Circuits and Systems MIXDES, Zakopane, Poland, 2001, pp. 213–220

    Google Scholar 

  28. Ł. Starzak, M. Zubert, A. Napieralski, The new approach to the power semiconductor devices modelling, in: International Conference on Modeling and Simulation of Microsystems MSM, San Juan, Puerto Rico, 2002, pp. 640–644

    Google Scholar 

  29. H. Goebel, A unified method for modeling semiconductor power devices. IEEE Trans. Power Electron. 9(5), 497–505 (1994)

    Article  Google Scholar 

  30. Ph. Leturcq Ph, M. O. Berraïes, J.-P. Laur, P. Austin, Full dynamic power bipolar device models for circuit simulation, in: Recordings of the Power Electronics Specialists Conference PESC, Fukuoka, Japan, 1998, pp. 1695–1703

    Google Scholar 

  31. D. Metzner, T. Vogler, D. Schröder, A modular concept for the circuit simulation of bipolar power semiconductors. IEEE Trans. Power Electron. 9(5), 506–513 (1994)

    Article  Google Scholar 

  32. Ł. Starzak, B. Świercz, M. Zubert, A. Napieralski, Web-based simulation of power circuits for design and teaching, in: 10th European Conference on Power Electronics and Applications EPE, Toulouse, France, 2003, CD-ROM

    Google Scholar 

  33. H. Benda, A. Hoffmann, E. Spenke, Switching processes in alloyed PIN rectifiers. Solid State Electron. 8, 887–906 (1965)

    Article  Google Scholar 

  34. J. Zarȩbski, Tranzystory MOS mocy, Fundacja Rozwoju Akademii Morskiej w Gdyni, Gdynia, 2007

    Google Scholar 

  35. L. Lorenz, CoolMOS technology – outstanding prospects towards idealized power semiconductor switch, Eur. Power Electron. Drives J. 10(1), 3–10 (2000)

    Google Scholar 

  36. J. Zarȩbski, K. Górecki, Modelling CoolMOS transistors in SPICE. IEE Proc. Circuits Devices Syst. 153, 46–52 (2006)

    Article  Google Scholar 

  37. R.K. Burra, K. Shenai, CoolMOS integral diode: a simple analytical reverse recovery model, in: IEEE 34th Annual Power Electronics Specialist Conference PESC, Vol. 2, Acapulco, Mexico, 2003, pp. 834–838

    Google Scholar 

  38. J. Zarȩbski, K. Górecki, D. Bisewski, Modelling the temperature influence on the characteristics of the CoolMOSC2/600V transistor, in: 7th International Seminar on Power Semiconductors ISPS Prague, Czech Republic, 2004, pp. 225–228

    Google Scholar 

  39. H. Kuhn, D. Schroder, A new validated physically based IGCT model for circuit simulation of snubberless and series operation. IEEE Trans. Ind. Appl. 38(6), 1606–1612 (2002)

    Article  Google Scholar 

  40. A.E. Schlögl, T.T. Mnatsakanov, H. Kuhn, D. Schröder, Temperature dependent characterization of bipolar silicon power semiconductors – a new physical model validated by device-internal probing between 400–100 K. IEEE Trans. Power Electron. 15(6), 1267–1274 (2000)

    Article  Google Scholar 

  41. P.G. Neudeck, R.S. Okojie, L.-Y. Chen, High-temperature electronics – a role for wide bandgap semiconductors? IEEE Proc. 90(6), 1065–1076 (2002)

    Article  Google Scholar 

  42. M. Kneifel, D. Silber, R. Held, Predictive modeling of SiC-device power Schottky diode for investigations in power electronics, in: 11th Annual Applied Power Electronics Conference and Exposition APEC, Vol. 1, San Jose, CA, USA, 1996, pp. 239–245

    Google Scholar 

  43. Hui Zhang, L.M. Tolbert, B. Ozpineci, System modeling and characterization of SiC Schottky power diodes, in: IEEE Workshops on Computers in Power Electronics COMPEL, Troy, NY, USA, 2006, pp. 199–204

    Google Scholar 

  44. R. Kolessar, H.-P. Nee, An experimentally validated electro-thermal compact model for 4H-SiC power diodes, in: IEEE International Symposium on Industrial Electronics ISIE, Vol. 2, Pusan, Korea, 2001, pp. 1345–1350

    Google Scholar 

  45. SiC electronics market to reach 800m by 2015 (November 12, 2007); http://www.semiconductor-today.com/news_items/NEWS_2007/NOV_07/YOLESIC_121107.htm

  46. T.R. McNutt, A.R. Hefner, H.A. Mantooth, D. Berning, S.-H. Ryu, Silicon carbide power MOSFET model and parameter extraction sequence. IEEE Trans. Power Electron. 22(2), 353–363 (2007)

    Article  Google Scholar 

  47. M. Lades, A. Schenk, U. Krumbein, G. Wachutka, W. Fichtner, Temperature-dependent study of 6H-SiC pin-diode reverse characteristics, in: International Conference on Simulation of Semiconductor Processes and Devices SISPAD, Tokyo, Japan, 1996, pp. 55–56

    Google Scholar 

  48. W. Kaindl, M. Lades, G. Wachutka, Transient electro-thermal analysis of dynamic punch-through in SiC power devices, in: International Conference on Simulation of Semiconductor Processes and Devices SISPAD, Kyoto, Japan, 1999, pp. 231–234

    Google Scholar 

  49. T.R. McNutt, A.R. Hefner, H.A. Mantooth, J. Duliere, D.W. Berning, R. Singh, Silicon carbide PiN and merged PiN Schottky power diode models implemented in the Saber circuit simulator. IEEE Trans. Power Electron. 19(3), 573–581 (2004)

    Article  Google Scholar 

  50. G. Brezeanu, M. Badila, B. Tudor, J. Millan, P. Godignon, F. Udrea, G.A.J. Amaratunga, A. Mihaila, Accurate modeling and parameter extraction for 6H-SiC Schottky barrier diodes (SBDs) with nearly ideal breakdown voltage, IEEE Trans. Electron. Devices 48(9), 2148–2153 (2001)

    Article  Google Scholar 

  51. M. Lades, G. Wachutka, Extended anisotropic mobility model applied to 4H/6H-SiC devices, in: International Conference on Simulation of Semiconductor Processes and Devices SISPAD, Cambridge, MA, USA, 1997, pp. 169–171

    Google Scholar 

  52. M. Zubert, Wielowymiarowe modelowanie sprzȩżonych zjawisk fizycznych w nowoczesnych strukturach półprzewodnikowych, z zastosowaniem jȩzyka VHDL-AMS i modeli o stałych rozłożonych, ze szczególnym uwzglȩdnieniem modelowania elektrotermicznego układów VLSI oraz Smart Power, Ph.D. thesis, Technical University of Lodz, Łódź, 1999

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Napieralski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Napieralski, A., Napieralska, M., Starzak, Ł. (2010). Power Devices. In: Grabinski, W., Gneiting, T. (eds) POWER/HVMOS Devices Compact Modeling. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3046-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-3046-7_5

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-3045-0

  • Online ISBN: 978-90-481-3046-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics