Skip to main content

Modeling of High Voltage MOSFETs Based on EKV (HV-EKV)

  • Chapter
  • First Online:
POWER/HVMOS Devices Compact Modeling

Abstract

The accurate compact modeling of High Voltage (HV) MOS transistors has always been a great challenge in the device modeling community. This is due to the fact that the charges and field associated with the drift region and intrinsic MOS have very complex dependence on the external terminal biases owing to the asymmetric device architecture. In this chapter, A modeling strategy for HVMOS transistors (HV-EKV) based on the scalable drift resistance [1, 2] and the use of charge based EKV2.6 MOSFET model [3] as a core for the intrinsic MOS channel is presented [4, 5]. The strategy is optimized according to the fast convergence and good accuracy criteria. The model is stable and robust in the entire bias range useful for circuit design purpose. An important aspect of this general model is the scalability of the model with physical and electrical parameters along with the correct modeling of quasi-saturation and self-heating effect. The model is validated on the measured characteristics of two widely used high voltage devices in the industry i.e. LDMOS [6] and VDMOS [7] devices, and tested on commercial circuit simulators like SABER (Synopsys), ELDO (Mentor Graphics), HSpice (Synopsys), Spectre (Cadence) and UltraSim (Cadence). The model shows good behavior for all capacitances which are unique for these devices showing peaks and shift of peaks with bias variation. Also the model exhibits excellent scalability with transistor width, drift length, number of fingers and temperature. The last part of this chapter will explain the importance of modeling of lateral non-uniform doping in the intrinsic channel [8, 9, 10, 11]. It is shown that C GD & C DG capacitances are strong function of lateral doping [11, 12].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y.S. Chauhan, C. Anghel, F. Krummenacher, R. Gillon, A. Baguenier, B. Desoete, S. Frere, A.M. Ionescu, M. Declercq, A compact DC and AC model for circuit simulation of high voltage VDMOS transistor, in IEEE International Symposium on Quality Electronic Design (ISQED), March 2006, pp. 109–114

    Google Scholar 

  2. Y.S. Chauhan, C. Anghel, F. Krummenacher, A.M. Ionescu, M. Declercq, R. Gillon, S. Frere, B. Desoete, A highly scalable high voltage MOSFET model, in IEEE European Solid-State Device Research Conference (ESSDERC), Sept 2006, pp. 270–273

    Google Scholar 

  3. C. Enz, F. Krummenacher, E. Vittoz, An analytical MOS transistor model valid in all regions of operation and dedicated to low-voltage and low-current applications. J. Analog Integr. Circ. S 8(1), 83–114 (July 1995)

    Article  Google Scholar 

  4. Y.S. Chauhan, C. Anghel, F. Krummenacher, C. Maier, R. Gillon, B. Bakeroot, B. Desoete, S. Frere, A.B. Desormeaux, A. Sharma, M. Declercq, A.M. Ionescu, Scalable general high voltage MOSFET model including quasi-saturation and self-heating effect. Solid State Electron. 50(11–12), 1801–1813 (2006)

    Article  Google Scholar 

  5. Y.S. Chauhan, R. Gillon, B. Bakeroot, F. Krummenacher, M. Declercq, A.M. Ionescu, An EKV-based high voltage MOSFET model with improved mobility and drift model. Solid State Electron. 51(11–12), 1581–1588 (2007)

    Article  Google Scholar 

  6. Y.S. Chauhan, C. Anghel, F. Krummenacher, A. Ionescu, M. Declercq, R. Gillon, S. Frere, B. Desoete, B. Bakeroot, C. Maier, Ekv based dmos model extension for v-dmos (2004–2006), http://www-g.eng.cam.ac.uk/robuspic/reports.htm

  7. Y.S. Chauhan, C. Anghel, F. Krummenacher, A. Ionescu, M. Declercq, R. Gillon, S. Frere, B. Desoete, B. Bakeroot, C. Maier, Ekv based l-dmos model update including internal temperatures (2004–2006), http://www-g.eng.cam.ac.uk/robuspic/reports.htm

  8. S. Frere, P. Moens, B. Desoete, D. Wojciechowski, A. Walton, An improved LDMOS transistor model that accurately predicts capacitance for all bias conditions, in Proceedings of the 2005 International Conference on Microelectronic Test Structures (ICMTS), April 2005, 75–79

    Google Scholar 

  9. C. Anghel, High voltage devices for standard MOS technologies: characterisation and modelling, Ph.D. Dissertation, Thesis No. 3116, EPFL, 2004

    Google Scholar 

  10. N. Hefyene, Electrical characterization and modelling of lateral DMOS transistor: investigation of capacitances and hot-carrier impact, Ph.D. Dissertation, Thesis No. 3200, EPFL, 2005

    Google Scholar 

  11. Y.S. Chauhan, F. Krummenacher, R. Gillon, B. Bakeroot, M. J. Declercq, A.M. Ionescu, Compact modeling of lateral nonuniform doping in high-voltage MOSFETs, IEEE Trans. Electron Devices 54(6), 1527–1539 (June 2007)

    Article  Google Scholar 

  12. Y.S. Chauhan, F. Krummenacher, C. Anghel, R. Gillon, B. Bakeroot, M. Declercq, A.M. Ionescu, Analysis and modeling of lateral non-uniform doping in high-voltage MOSFETs, in IEEE Int. Electron Devices Meeting, 8.3.1–8.3.4 (Dec 2006)

    Google Scholar 

  13. C. Anghel, N. Hefyene, A. Ionescu, M. Vermandel, B. Bakeroot, J. Doutreloigne, R. Gillon, S. Frere, C. Maier, Y. Mourier, Investigations and physical modelling of saturation effects in lateral DMOS transistor architectures based on the concept of intrinsic drain voltage, in IEEE European Solid-State Device Research Conference (ESSDERC), Sept 2001, 399–402

    Google Scholar 

  14. N. Hefyene, E. Vestiel, B. Bakeroot, C. Anghel, S. Frere, A. Ionescu, R. Gillon, Bias-dependent drift resistance modeling for accurate DC and AC simulation of asymmetric HV-MOSFET, in IEEE International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Sept 2002, 203–206

    Google Scholar 

  15. C. Anghel, Y.S. Chauhan, N. Hefyene, A. Ionescu, A physical analysis of HV MOSFET capacitance behaviour, in IEEE International Symposium on Industrial Electronics (ISIE), vol. 2, June 2005, 473–477

    Google Scholar 

  16. N. D’Halleweyn, J. Benson, W. Redman-White, K. Mistry, M. Swanenberg, MOOSE: a physically based compact DC model of SOI LD MOSFETs for analogue circuit simulation, IEEE Trans. Comput. Aid. Des. Integr. Circ. Syst. 23(10), 1399–1410 (Oct 2004)

    Article  Google Scholar 

  17. J.-M. Sallese, M. Bucher, F. Krummenacher, P. Fazan, Inversion charge lineariazation in MOSFET modeling and rigorous derivation of the EKV compact model, Solid-State Electron. 46(11), 677–683 (April 2003)

    Article  Google Scholar 

  18. C. Kreuzer, N. Krischke, P. Nance, Physically based description of quasi-saturation region of vertical DMOS power transistors, in IEEE International Electron Devices Meeting (IEDM), Dec 1996, 489–492

    Google Scholar 

  19. C. Anghel, N. Hefyene, R. Gillon, M. Tack, M. Declercq, A. Ionescu, New method for temperature-dependent thermal resistance and capacitance accurate extraction in high-voltage DMOS transistors, in IEEE International Electron Devices Meeting (IEDM), Dec 2003, 5.6.1–5.6.4

    Google Scholar 

  20. C. Anghel, R. Gillon, A. Ionescu, Self-heating characterization and extraction method for thermal resistance and capacitance in HV MOSFETs, IEEE Electron Device Lett. 25(3), 141–143 (March 2004)

    Article  Google Scholar 

  21. P. Rossel, H. Tranduc, D. Montcoqut, G. Charitat, I. Pages, Avalanche characteristics of MOS transistors, in IEEE International Conference on Microelectronics, vol. 1, Sept 1997, 371–381

    Google Scholar 

  22. Y.S. Chauhan, F. Krummenacher, R. Gillon, B. Bakeroot, M. Declercq, A.M. Ionescu, A new charge based compact model for lateral asymmetric MOSFET and its application to high voltage MOSFET modeling, in IEEE International Conference on VLSI Design and International Conference on Embedded Systems, Jan 2007, 177–182

    Google Scholar 

  23. Y.S. Chauhan, F. Krummenacher, R. Gillon, B. Bakeroot, M. Declercq, A.M. Ionescu, Compact modeling of lateral non-uniform doping in high-voltage MOSFETs, IEEE Trans. Electron Devices 54(6), 1527–1539 (June 2007)

    Article  Google Scholar 

  24. A. Aarts, N. D’Halleweyn, R. van Langevelde, A surface-potential-based high-voltage compact LDMOS transistor model, IEEE Trans. Electron Devices 52(5), 999–1007 (May 2005)

    Article  Google Scholar 

  25. A. Canepari, G. Bertrand, A. Giry, M. Minondo, F. Blanchet, H. Jaouen, B. Reynard, N. Jourdan, J.-P. Chante, LDMOS modeling for analog and RF circuit design, in IEEE European Solid-State Device Research Conference (ESSDERC), Sept 2005, 469–472

    Google Scholar 

  26. F. Heiman, H. Miiller, Temperature dependence of n-type MOS transistors, IEEE Trans. Electron Devices 12(3), 142–148 (March 1965)

    Article  Google Scholar 

  27. Z.D. Prijic, S.S. Dimitrijev, N.D. Stojadinovic, The determination of zero temperature coefficient point in CMOS transistors, Microelectron. Reliab. 32(6), 769–773 (June 1992)

    Article  Google Scholar 

  28. I. Filanovsky, L. Najafizadeh, Zeroing in on a zero-temperature coefficient point, in IEEE Midwest Symposium on Circuits and Systems (MWSCAS), Aug 2002, I–271–4

    Google Scholar 

  29. C.H. Ling, Observation of zero temperature coefficient of capacitance in the MOS capacitor, Solid-State Electron. 32(11), 1043–1044 (November 1989)

    Article  Google Scholar 

  30. L. Najafizadeh, I. Filanovsky, A simple voltage reference using transistor with ZTC point and PTAT current source, in IEEE International Symposium on Circuits and Systems (ISCAS), May 2004, I–909–911

    Google Scholar 

  31. F. Udrea, D. Garner, K. Sheng, A. Popescu, H. Lim, V. Milne, SOI power devices, IEE Electron. Commun. Eng. J. 12(1), 27–40 (2000)

    Article  Google Scholar 

  32. C. Anghel, B. Bakeroot, Y.S. Chauhan, R. Gillon, C. Maier, P. Moens, J. Doutreloigne, A. Ionescu, New method for threshold voltage extraction of high-voltage MOSFETs based on gate-to-drain capacitance measurement, IEEE Electron Device Lett. 27(7), 602–604 (July 2006)

    Article  Google Scholar 

  33. A. Ortiz-Conde, F.G. Sanchez, A. Cerdeira, M. Estrada, D. Flandre, J. Liou, A procedure to extract mobility degradation, series resistance and threshold voltage of SOI MOSFETs in the saturation region, in IEEE International Conference on Solid-State and Integrated-Circuit Technology, Oct 2001, 887–890

    Google Scholar 

  34. B. Cretu, T. Boutchacha, G. Ghibaudo, F. Balestra, New ratio method for effective channel length and threshold voltage extraction in MOS transistors, Electron. Lett. 37(11), 717–719 (May 2001)

    Article  Google Scholar 

  35. G. Ghibaudo, New method for the extraction of MOSFET parameters, Electronics Letters 24(9), 543–545 (April 1988)

    Article  Google Scholar 

  36. Y.Y.Z. Kong, F.C.J. Yeow, Extraction of MOSFET threshold voltage, series resistance, effective channel length, and inversion layer mobility from small-signal channel conductance measurement, IEEE Trans. Electron Devices 48(12), 2870–2874 (Dec 2001)

    Article  Google Scholar 

  37. Ekv mos model, http://legwww.epfl.ch/ekv.

  38. M. Bucher, C. Lallement, C.C. Enz, An efficient parameter extraction methodology for the EKV MOST model, in IEEE International Conference on Microelectronic Test Structures (ICMTS), March 1996, 145–150

    Google Scholar 

  39. C. Anghel, A. Ionescu, N. Hefyene, R. Gillon, Self-heating characterization and extraction method for thermal resistance and capacitance in high voltage MOSFETs, in IEEE European Solid-State Device Research Conference (ESSDERC), Sept 2003, 449–452

    Google Scholar 

  40. Y.S. Chauhan, R. Gillon, M.J. Declercq, A.M. Ionescu, Impact of lateral non-uniform doping and hot carrier injection on capacitance behavior of high voltage MOSFETs, IETE Technical Review, Sep–Oct 2008

    Google Scholar 

  41. A. Aarts, R. van der Hout, J. Paasschens, A. Scholten, M. Willemsen, D. Klaassen, New fundamental insights into capacitance modeling of laterally nonuniform MOS devices, IEEE Trans. Electron Devices 53(2), 270–278 (Feb 2006)

    Article  Google Scholar 

  42. K. Dharmawardana, G. Amaratunga, Modeling of high current density trench gate MOSFET, IEEE Transact. Electron Devices 47(12), 2420–2428 (Dec 2000)

    Article  Google Scholar 

  43. A.S. Roy, Y.S. Chauhan, C. Enz, J.-M. Sallese, A.M. Ionescu, M. Declercq, Partitioning Scheme in Lateral Asymmetric MOST, in IEEE European Solid-State Device Research Conference, Sept 2006, 307–310

    Google Scholar 

  44. A.S. Roy, C.C. Enz, J.-M. Sallese, Drain-source partitioning in MOSFET, IEEE Trans. Electron Devices, June 2007

    Google Scholar 

  45. A. Aarts, R. van der Hout, J. Paasschens, A. Scholten, M. Willemsen, D. Klaassen, Capacitance modeling of laterally non-uniform MOS devices, in IEEE International Electron Devices Meeting, Dec 2004, 751–754

    Google Scholar 

  46. J.M. Sallese, A.-S. Porret, A novel approach to charge-based non-quasi-static model of the MOS transistor valid in all modes of operation, Solid-State Electron. 44(6), 887–894 (June 2000)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank C. Anghel, R. Gillon, B. Desoete, C. Maier, Andre Baguenier Desormeaux and CMC members for interesting discussions and feedback in the model development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yogesh Singh Chauhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Chauhan, Y.S., Krummenacher, F., Ionescu, A.M. (2010). Modeling of High Voltage MOSFETs Based on EKV (HV-EKV). In: Grabinski, W., Gneiting, T. (eds) POWER/HVMOS Devices Compact Modeling. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3046-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-3046-7_4

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-3045-0

  • Online ISBN: 978-90-481-3046-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics