Skip to main content

Elimination of Cancer Stem Cells

  • Chapter
  • First Online:
Book cover Stem Cell Biology in Health and Disease

Abstract

The acceptance of the Cancer Stem Cell (CSC) concept has revolutionized all aspects of our understanding of cancer biology, from the cellular origin of cancer to its growth and expansion, shedding new light into the interrelations of all the cellular components of the tumour and their role in its progression. From the therapeutic point of view, the existence of CSCs also explains one of the most dramatic events in the clinical history of many cancer patients after diagnosis: the almost inevitable relapse after a period of variable clinical remission. The knowledge that tumours are maintained and propagated from just a small population of cells with self-renewal properties and resistant to current anti-proliferative treatments opens new avenues for therapeutic approaches. The development of new drugs targeting specifically these CSCs should allow us, in combination with current therapies, to eliminate entirely all the cellular components of the tumour, thus preventing relapse and completely curing the disease. Here we revise the most salient biological features of CSCs that are relevant for the development of new therapies and describe the molecular basis of the current approaches aimed at CSC elimination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cobaleda C, Vicente-Duenas C and Sánchez-García I (2007) Cancer Stem Cells. John Wiley & Sons, Ltd, Chichester

    Google Scholar 

  2. Sanchez-Garcia I, Vicente-Duenas C and Cobaleda C (2007) The theoretical basis of cancer-stem-cell-based therapeutics of cancer: can it be put into practice? Bioessays 29: 1269–1280

    PubMed  CAS  Google Scholar 

  3. Bonnet D and Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3: 730–737

    PubMed  CAS  Google Scholar 

  4. Cobaleda C, Gutierrez-Cianca N, Perez-Losada J, et al. (2000) A primitive hematopoietic cell is the target for the leukemic transformation in human philadelphia-positive acute lymphoblastic leukemia. Blood 95: 1007–1013

    PubMed  CAS  Google Scholar 

  5. Lapidot T, Sirard C, Vormoor J, et al. (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367: 645–648

    PubMed  CAS  Google Scholar 

  6. Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100: 3983–3988

    PubMed  CAS  Google Scholar 

  7. Singh SK, Hawkins C, Clarke ID, et al. (2004) Identification of human brain tumour initiating cells. Nature 432: 396–401

    PubMed  CAS  Google Scholar 

  8. Li C, Heidt DG, Dalerba P, et al. (2007) Identification of pancreatic cancer stem cells. Cancer Res 67: 1030–1037

    PubMed  CAS  Google Scholar 

  9. Prince ME, Sivanandan R, Kaczorowski A, et al. (2007) Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci USA 104: 973–978

    PubMed  CAS  Google Scholar 

  10. Dalerba P, Dylla SJ, Park IK, et al. (2007) Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA 104: 10158–10163

    PubMed  CAS  Google Scholar 

  11. O’Brien CA, Pollett A, Gallinger S, et al. (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445: 106–110

    PubMed  Google Scholar 

  12. Ricci-Vitiani L, Lombardi DG, Pilozzi E, et al. (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445: 111–115

    PubMed  CAS  Google Scholar 

  13. Clarke MF, Dick JE, Dirks PB, et al. (2006) Cancer stem cells—perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res 66: 9339–9344

    PubMed  CAS  Google Scholar 

  14. Cho RW and Clarke MF (2008) Recent advances in cancer stem cells. Curr Opin Genet Dev 18: 48–53

    PubMed  CAS  Google Scholar 

  15. Kelly PN, Dakic A, Adams JM, et al. (2007) Tumor growth need not be driven by rare cancer stem cells. Science 317: 337

    PubMed  CAS  Google Scholar 

  16. Virchow R (1855) Editorial. Virchows Arch Pathol Anat Physiol Klin Med 3: 23

    Google Scholar 

  17. Cohnheim J (1867) Ueber entzuendung und eiterung. Path Anat Physiol Klin Med 40: 1–79

    Google Scholar 

  18. Etzioni R, Urban N, Ramsey S, et al. (2003) The case for early detection. Nat Rev Cancer 3: 243–252

    PubMed  CAS  Google Scholar 

  19. Berns A (2005) Stem cells for lung cancer? Cell 121: 811–813

    PubMed  CAS  Google Scholar 

  20. Clarke MF (2005) A self-renewal assay for cancer stem cells. Cancer Chemother Pharmacol 56(Suppl 1): 64–68

    PubMed  Google Scholar 

  21. Hambardzumyan D, Squatrito M and Holland EC (2006) Radiation resistance and stem-like cells in brain tumors. Cancer Cell 10: 454–456

    PubMed  CAS  Google Scholar 

  22. Lou H and Dean M (2007) Targeted therapy for cancer stem cells: the patched pathway and ABC transporters. Oncogene 26: 1357–1360

    PubMed  CAS  Google Scholar 

  23. Trumpp A and Wiestler OD (2008) Mechanisms of Disease: cancer stem cells—targeting the evil twin. Nat Clin Pract 5: 337–347

    CAS  Google Scholar 

  24. Woodward WA, Chen MS, Behbod F, et al. (2007) WNT/beta-catenin mediates radiation resistance of mouse mammary progenitor cells. Proc Natl Acad Sci USA 104: 618–623

    PubMed  CAS  Google Scholar 

  25. Massard C, Deutsch E and Soria JC (2006) Tumour stem cell-targeted treatment: elimination or differentiation. Ann Oncol 17: 1620–1624

    PubMed  CAS  Google Scholar 

  26. Blagosklonny MV (2006) Target for cancer therapy: proliferating cells or stem cells. Leukemia 20: 385–391

    PubMed  CAS  Google Scholar 

  27. Klonisch T, Wiechec E, Hombach-Klonisch S, et al. (2008) Cancer stem cell markers in common cancers – therapeutic implications. Trends Mol Med 14(10): 450–460

    PubMed  CAS  Google Scholar 

  28. Ward RJ and Dirks PB (2007) Cancer stem cells: at the headwaters of tumor development. Annu Rev Pathol 2: 175–189

    PubMed  CAS  Google Scholar 

  29. Clarke MF and Fuller M (2006) Stem cells and cancer: two faces of eve. Cell 124: 1111–1115

    PubMed  CAS  Google Scholar 

  30. Gil J, Stembalska A, Pesz KA, et al. (2008) Cancer stem cells: the theory and perspectives in cancer therapy. J Appl Genet 49: 193–199

    PubMed  Google Scholar 

  31. Huntly BJ and Gilliland DG (2005) Leukaemia stem cells and the evolution of cancer-stem-cell research. Nat Rev Cancer 5: 311–321

    PubMed  CAS  Google Scholar 

  32. Smith A (2006) A glossary for stem-cell bioology. Nature doi:10.1038/nature04954

    Google Scholar 

  33. Aguirre-Ghiso JA (2007) Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 7: 834–846

    PubMed  CAS  Google Scholar 

  34. Croker AK and Allan AL (2008) Cancer stem cells: implications for the progression and treatment of metastatic disease. J Cell Mol Med 12: 374–390

    PubMed  CAS  Google Scholar 

  35. Rajasekhar VK and Begemann M (2007) Concise review: roles of polycomb group proteins in development and disease: a stem cell perspective. Stem Cells 25: 2498–2510

    PubMed  CAS  Google Scholar 

  36. Li F, Tiede B, Massague J, et al. (2007) Beyond tumorigenesis: cancer stem cells in metastasis. Cell Res 17: 3–14

    PubMed  CAS  Google Scholar 

  37. Hermann PC, Huber SL, Herrler T, et al. (2007) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1: 313–323

    PubMed  CAS  Google Scholar 

  38. Visvader JE and Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8: 755–768

    PubMed  CAS  Google Scholar 

  39. Chambers AF, Groom AC and MacDonald IC (2002) Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2: 563–572

    PubMed  CAS  Google Scholar 

  40. Paget S (1989) The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev 8: 98–101

    PubMed  CAS  Google Scholar 

  41. Ratajczak MZ, Zuba-Surma E, Kucia M, et al. (2006) The pleiotropic effects of the SDF-1-CXCR4 axis in organogenesis, regeneration and tumorigenesis. Leukemia 20: 1915–1924

    PubMed  CAS  Google Scholar 

  42. Liang Z, Wu T, Lou H, et al. (2004) Inhibition of breast cancer metastasis by selective synthetic polypeptide against CXCR4. Cancer Res 64: 4302–4308

    PubMed  CAS  Google Scholar 

  43. Gallacher L, Murdoch B, Wu DM, et al. (2000) Isolation and characterization of human CD34(–)Lin(–) and CD34(+)Lin(–) hematopoietic stem cells using cell surface markers AC133 and CD7. Blood 95: 2813–2820

    PubMed  CAS  Google Scholar 

  44. Perez-Caro M and Sanchez-Garcia I (2006) Killing time for cancer stem cells (CSC): discovery and development of selective CSC inhibitors. Curr Med Chem 13: 1719–1725

    PubMed  CAS  Google Scholar 

  45. Sell S (2004) Stem cell origin of cancer and differentiation therapy. Crit Rev Oncol Hematol 51: 1–28

    PubMed  Google Scholar 

  46. Sell S (2006) Cancer stem cells and differentiation therapy. Tumour Biol 27: 59–70

    PubMed  Google Scholar 

  47. Ohno R, Asou N and Ohnishi K (2003) Treatment of acute promyelocytic leukemia: strategy toward further increase of cure rate. Leukemia 17: 1454–1463

    PubMed  CAS  Google Scholar 

  48. Mueller E, Sarraf P, Tontonoz P, et al. (1998) Terminal differentiation of human breast cancer through PPAR gamma. Mol Cell 1: 465–470

    PubMed  CAS  Google Scholar 

  49. Tontonoz P, Singer S, Forman BM, et al. (1997) Terminal differentiation of human liposarcoma cells induced by ligands for peroxisome proliferator-activated receptor gamma and the retinoid X receptor. Proc Natl Acad Sci USA 94: 237–241

    PubMed  CAS  Google Scholar 

  50. Taddei A, Roche D, Bickmore WA, et al. (2005) The effects of histone deacetylase inhibitors on heterochromatin: implications for anticancer therapy? EMBO Rep 6: 520–524

    PubMed  CAS  Google Scholar 

  51. Piccirillo SG, Reynolds BA, Zanetti N, et al. (2006) Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells. Nature 444: 761–765

    PubMed  CAS  Google Scholar 

  52. Chiba S (2006) Notch signaling in stem cell systems. Stem Cells 24: 2437–2447

    PubMed  CAS  Google Scholar 

  53. Natarajan TG and FitzGerald KT (2007) Markers in normal and cancer stem cells. Cancer Biomark 3: 211–231

    PubMed  CAS  Google Scholar 

  54. Roy M, Pear WS and Aster JC (2007) The multifaceted role of Notch in cancer. Curr Opin Genet Dev 17: 52–59

    PubMed  CAS  Google Scholar 

  55. Rizzo P, Osipo C, Foreman K, et al. (2008) Rational targeting of Notch signaling in cancer. Oncogene 27: 5124–5131

    PubMed  CAS  Google Scholar 

  56. Ruiz i Altaba A (2008) Therapeutic inhibition of Hedgehog-GLI signaling in cancer: epithelial, stromal, or stem cell targets? Cancer Cell 14: 281–283

    PubMed  CAS  Google Scholar 

  57. Varjosalo M and Taipale J (2008) Hedgehog: functions and mechanisms. Genes Dev 22: 2454–2472

    PubMed  CAS  Google Scholar 

  58. Bar EE, Chaudhry A, Lin A, et al. (2007) Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma. Stem Cells 25: 2524–2533

    PubMed  CAS  Google Scholar 

  59. Clement V, Sanchez P, de Tribolet N, et al. (2007) HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 17: 165–172

    PubMed  CAS  Google Scholar 

  60. Yauch RL, Gould SE, Scales SJ, et al. (2008) A paracrine requirement for hedgehog signalling in cancer. Nature 455: 406–410

    PubMed  CAS  Google Scholar 

  61. Peacock CD, Wang Q, Gesell GS, et al. (2007) Hedgehog signaling maintains a tumor stem cell compartment in multiple myeloma. Proc Natl Acad Sci USA 104: 4048–4053

    PubMed  CAS  Google Scholar 

  62. Watkins DN, Berman DM, Burkholder SG, et al. (2003) Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature 422: 313–317

    PubMed  CAS  Google Scholar 

  63. Kimura H, Ng JM and Curran T (2008) Transient inhibition of the Hedgehog pathway in young mice causes permanent defects in bone structure. Cancer Cell 13: 249–260

    PubMed  CAS  Google Scholar 

  64. Lobo M and Zachary I (2000) Nuclear localization and apoptotic regulation of an amino-terminal domain focal adhesion kinase fragment in endothelial cells [In Process Citation]. Biochem Biophys Res Commun 276: 1068–1074

    PubMed  CAS  Google Scholar 

  65. Clevers H (2006) Wnt/beta-catenin signaling in development and disease. Cell 127: 469–480

    PubMed  CAS  Google Scholar 

  66. Staal FJ, Luis TC and Tiemessen MM (2008) WNT signalling in the immune system: WNT is spreading its wings. Nat Rev Immunol 8: 581–593

    PubMed  CAS  Google Scholar 

  67. Giuliani N, Morandi F, Tagliaferri S, et al. (2007) Production of Wnt inhibitors by myeloma cells: potential effects on canonical Wnt pathway in the bone microenvironment. Cancer Res 67: 7665–7674

    PubMed  CAS  Google Scholar 

  68. Tian E, Zhan F, Walker R, et al. (2003) The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med 349: 2483–2494

    PubMed  CAS  Google Scholar 

  69. Katoh M and Katoh M (2007) WNT signaling pathway and stem cell signaling network. Clin Cancer Res 13: 4042–4045

    PubMed  CAS  Google Scholar 

  70. Barker N and Clevers H (2006) Mining the Wnt pathway for cancer therapeutics. Nat Rev Drug Discov 5: 997–1014

    PubMed  CAS  Google Scholar 

  71. Levine SS, King IF and Kingston RE (2004) Division of labor in polycomb group repression. Trends Biochem Sci 29: 478–485

    PubMed  CAS  Google Scholar 

  72. Dimri GP, Martinez JL, Jacobs JJ, et al. (2002) The Bmi-1 oncogene induces telomerase activity and immortalizes human mammary epithelial cells. Cancer Res 62: 4736–4745

    PubMed  CAS  Google Scholar 

  73. Lessard J and Sauvageau G (2003) Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 423: 255–260

    PubMed  CAS  Google Scholar 

  74. Molofsky AV, Pardal R, Iwashita T, et al. (2003) Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 425: 962–967

    PubMed  CAS  Google Scholar 

  75. Molofsky AV, He S, Bydon M, et al. (2005) Bmi-1 promotes neural stem cell self-renewal and neural development but not mouse growth and survival by repressing the p16Ink4a and p19Arf senescence pathways. Genes Dev 19: 1432–1437

    PubMed  CAS  Google Scholar 

  76. Park IK, Qian D, Kiel M, et al. (2003) Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423: 302–305

    PubMed  CAS  Google Scholar 

  77. Hemmati HD, Nakano I, Lazareff JA, et al. (2003) Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA 100: 15178–15183

    PubMed  CAS  Google Scholar 

  78. Jacobs JJ, Scheijen B, Voncken JW, et al. (1999) Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev 13: 2678–2690

    PubMed  CAS  Google Scholar 

  79. Iwama A, Oguro H, Negishi M, et al. (2004) Enhanced self-renewal of hematopoietic stem cells mediated by the polycomb gene product Bmi-1. Immunity 21: 843–851

    PubMed  CAS  Google Scholar 

  80. Bruggeman SW, Valk-Lingbeek ME, van der Stoop PP, et al. (2005) Ink4a and Arf differentially affect cell proliferation and neural stem cell self-renewal in Bmi1-deficient mice. Genes Dev 19: 1438–1443

    PubMed  CAS  Google Scholar 

  81. Janzen V, Forkert R, Fleming HE, et al. (2006) Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature 443: 421–426

    PubMed  CAS  Google Scholar 

  82. Tan J, Yang X, Zhuang L, et al. (2007) Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev 21: 1050–1063

    PubMed  CAS  Google Scholar 

  83. Nakamura T, Largaespada DA, Lee MP, et al. (1996) Fusion of the nucleoporin gene NUP98 to HOXA9 by the chromosome translocation t(7;11)(p15;p15) in human myeloid leukaemia. Nat Genet 12: 154–158

    PubMed  CAS  Google Scholar 

  84. Fischbach NA, Rozenfeld S, Shen W, et al. (2005) HOXB6 overexpression in murine bone marrow immortalizes a myelomonocytic precursor in vitro and causes hematopoietic stem cell expansion and acute myeloid leukemia in vivo. Blood 105: 1456–1466

    PubMed  CAS  Google Scholar 

  85. Yuan TL and Cantley LC (2008) PI3K pathway alterations in cancer: variations on a theme. Oncogene 27: 5497–5510

    PubMed  CAS  Google Scholar 

  86. Keniry M and Parsons R (2008) The role of PTEN signaling perturbations in cancer and in targeted therapy. Oncogene 27: 5477–5485

    PubMed  CAS  Google Scholar 

  87. Stambolic V, MacPherson D, Sas D, et al. (2001) Regulation of PTEN transcription by p53. Mol Cell 8: 317–325

    PubMed  CAS  Google Scholar 

  88. Howes AL, Chiang GG, Lang ES, et al. (2007) The phosphatidylinositol 3-kinase inhibitor, PX-866, is a potent inhibitor of cancer cell motility and growth in three-dimensional cultures. Mol Cancer Ther 6: 2505–2514

    PubMed  CAS  Google Scholar 

  89. Garlich JR, De P, Dey N, et al. (2008) A vascular targeted pan phosphoinositide 3-kinase inhibitor prodrug, SF1126, with antitumor and antiangiogenic activity. Cancer Res 68: 206–215

    PubMed  CAS  Google Scholar 

  90. Yaguchi S, Fukui Y, Koshimizu I, et al. (2006) Antitumor activity of ZSTK474, a new phosphatidylinositol 3-kinase inhibitor. J Natl Cancer Inst 98: 545–556

    PubMed  CAS  Google Scholar 

  91. Chen JS, Zhou LJ, Entin-Meer M, et al. (2008) Characterization of structurally distinct, isoform-selective phosphoinositide 3'-kinase inhibitors in combination with radiation in the treatment of glioblastoma. Mol Cancer Ther 7: 841–850

    PubMed  CAS  Google Scholar 

  92. Garcia-Echeverria C and Sellers WR (2008) Drug discovery approaches targeting the PI3K/Akt pathway in cancer. Oncogene 27: 5511–5526

    PubMed  CAS  Google Scholar 

  93. Yilmaz OH, Valdez R, Theisen BK, et al. (2006) Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 441: 475–482

    PubMed  CAS  Google Scholar 

  94. Guo W, Lasky JL, Chang CJ, et al. (2008) Multi-genetic events collaboratively contribute to Pten-null leukaemia stem-cell formation. Nature 453: 529–533

    PubMed  CAS  Google Scholar 

  95. Helleday T, Petermann E, Lundin C, et al. (2008) DNA repair pathways as targets for cancer therapy. Nat Rev Cancer 8: 193–204

    PubMed  CAS  Google Scholar 

  96. Vucic D and Fairbrother WJ (2007) The inhibitor of apoptosis proteins as therapeutic targets in cancer. Clin Cancer Res 13: 5995–6000

    PubMed  CAS  Google Scholar 

  97. Yang L, Mashima T, Sato S, et al. (2003) Predominant suppression of apoptosome by inhibitor of apoptosis protein in non-small cell lung cancer H460 cells: therapeutic effect of a novel polyarginine-conjugated Smac peptide. Cancer Res 63: 831–837

    PubMed  CAS  Google Scholar 

  98. Eckelman BP, Salvesen GS and Scott FL (2006) Human inhibitor of apoptosis proteins: why XIAP is the black sheep of the family. EMBO Rep 7: 988–994

    PubMed  CAS  Google Scholar 

  99. Wang CY, Mayo MW, Korneluk RG, et al. (1998) NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281: 1680–1683

    PubMed  CAS  Google Scholar 

  100. Harley CB (2008) Telomerase and cancer therapeutics. Nat Rev Cancer 8: 167–179

    PubMed  CAS  Google Scholar 

  101. Shay JW and Wright WE (2006) Telomerase therapeutics for cancer: challenges and new directions. Nat Rev Drug Discov 5: 577–584

    PubMed  CAS  Google Scholar 

  102. Hombach-Klonisch S, Paranjothy T, Wiechec E, et al. (2008) Cancer stem cells as targets for cancer therapy: selected cancers as examples. Arch Immunol Ther Exp 56: 165–180

    Google Scholar 

  103. Akiyama M, Hideshima T, Shammas MA, et al. (2003) Effects of oligonucleotide N3'–>P5' thio-phosphoramidate (GRN163) targeting telomerase RNA in human multiple myeloma cells. Cancer Res 63: 6187–6194

    PubMed  CAS  Google Scholar 

  104. Wang ES, Wu K, Chin AC, et al. (2004) Telomerase inhibition with an oligonucleotide telomerase template antagonist: in vitro and in vivo studies in multiple myeloma and lymphoma. Blood 103: 258–266

    PubMed  CAS  Google Scholar 

  105. Gellert GC, Dikmen ZG, Wright WE, et al. (2006) Effects of a novel telomerase inhibitor, GRN163L, in human breast cancer. Breast Cancer Res Treat 96: 73–81

    PubMed  CAS  Google Scholar 

  106. Gomez-Millan J, Goldblatt EM, Gryaznov SM, et al. (2007) Specific telomere dysfunction induced by GRN163L increases radiation sensitivity in breast cancer cells. Int J Radiat Oncol Biol Phys 67: 897–905

    PubMed  CAS  Google Scholar 

  107. Dikmen ZG, Gellert GC, Jackson S, et al. (2005) In vivo inhibition of lung cancer by GRN163L: a novel human telomerase inhibitor. Cancer Res 65: 7866–7873

    PubMed  CAS  Google Scholar 

  108. Ozawa T, Gryaznov SM, Hu LJ, et al. (2004) Antitumor effects of specific telomerase inhibitor GRN163 in human glioblastoma xenografts. Neuro-oncology 6: 218–226

    PubMed  CAS  Google Scholar 

  109. Djojosubroto MW, Chin AC, Go N, et al. (2005) Telomerase antagonists GRN163 and GRN163L inhibit tumor growth and increase chemosensitivity of human hepatoma. Hepatology 42: 1127–1136

    PubMed  CAS  Google Scholar 

  110. Dikmen ZG, Wright WE, Shay JW, et al. (2008) Telomerase targeted oligonucleotide thio-phosphoramidates in T24-luc bladder cancer cells. J Cell Biochem 104: 444–452

    PubMed  CAS  Google Scholar 

  111. Asai A, Oshima Y, Yamamoto Y, et al. (2003) A novel telomerase template antagonist (GRN163) as a potential anticancer agent. Cancer Res 63: 3931–3939

    PubMed  CAS  Google Scholar 

  112. Cortez-Gonzalez X and Zanetti M (2007) Telomerase immunity from bench to bedside: round one. J Transl Med 5: 12

    PubMed  Google Scholar 

  113. Parmar K, Mauch P, Vergilio JA, et al. (2007) Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc Natl Acad Sci USA 104: 5431–5436

    PubMed  CAS  Google Scholar 

  114. Tang C, Ang BT and Pervaiz S (2007) Cancer stem cell: target for anti-cancer therapy. Faseb J 21: 3777–3785

    PubMed  CAS  Google Scholar 

  115. Lagasse E (2008) Cancer stem cells with genetic instability: the best vehicle with the best engine for cancer. Gene Ther 15: 136–142

    PubMed  CAS  Google Scholar 

  116. Herranz M and Sanchez-Garcia I (2007) Medical chemistry to spy cancer stem cells from outside the body. Mini Rev Med Chem 7: 781–791

    PubMed  CAS  Google Scholar 

  117. Shah K, Jacobs A, Breakefield XO, et al. (2004) Molecular imaging of gene therapy for cancer. Gene Ther 11: 1175–1187

    PubMed  CAS  Google Scholar 

  118. Vicente-Duenas C, Voces F, Perez-Caro M, et al. (2005) Improving the development on new cancer treatments: challenges and opportunities. Bentham Science Publishers Ltd., San Francisco, CA

    Google Scholar 

  119. Nakamura ES, Koizumi K, Kobayashi M, et al. (2006) RANKL-induced CCL22/ macrophage-derived chemokine produced from osteoclasts potentially promotes the bone metastasis of lung cancer expressing its receptor CCR4. Clin Exp Metastasis 23: 9–18

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

C.C. is a Spanish “Ramón y Cajal” investigator from the Spanish Ministerio de Educación y Ciencia. Research at C.C.’s lab is partially supported by Fondo de Investigaciones Sanitarias (PI04/0261; PI080164), Junta de Castilla y León (SA087A06) and Fundación de Investigación Médica MM. J.P.L. is an investigator of the “Programa Ramón y Cajal” from the Spanish “Ministerio de Educación y Ciencia”; his work is partially supported by the “Fondo de Investigaciones Sanitarias” (PI070057) and “MEC Consolider-Ingenio 2010” (Ref. CSD2007-0017). Research in ISG group is supported partially by FEDER and by MEC (SAF2006-03726), Junta de Castilla y León (CSI13A08 and GR15), FIS (PI050087), Federación de Cajas de Ahorro Castilla y León (I Convocatoria de Ayudas para Proyectos de Investigación Biosanitaria con Células Madre), CDTEAM project (CENIT-Ingenio 2010) and MEC OncoBIO Consolider-Ingenio 2010 (Ref. CSD2007-0017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Cobaleda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Sagrera, A., Pérez-Losada, J., Pérez-Caro, M., Jiménez, R., Sánchez-García, I., Cobaleda, C. (2009). Elimination of Cancer Stem Cells. In: Dittmar, T., Zanker, K. (eds) Stem Cell Biology in Health and Disease. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3040-5_16

Download citation

Publish with us

Policies and ethics