Skip to main content

“One for All” or “All for One”? – The Necessity of Cancer Stem Cell Diversity in Metastasis Formation and Cancer Relapse

  • Chapter
  • First Online:
Stem Cell Biology in Health and Disease

Abstract

Cancer stem cells (CSCs) are a rare population of cancer cells exhibiting stem cell properties, such as self-renewal, differentiation and tissue restoration. Because of the latter stem cell feature it is now assumed that (i) tumors originate from CSCs and (ii) that tumor tissues are organized hierarchically like normal tissues. Due to their tumor-initiating capacity as well as their inherent resistance towards radiation and cytotoxic compounds because of expression of multidrug resistance transporters and a highly efficient DNA repair system, CSCs have also been linked to metastatic spreading and cancer relapses. However, to initiate secondary lesions, CSCs must be capable to fulfill the hallmarks of metastasis formation and should be responsive to those factors facilitating organ-specific metastatic spreading. Additionally, cancer relapses exhibit an increased drug resistance and are often more aggressive than the original tumor. This suggest the necessity and existence of different CSC subtypes. In the present chapter, we will discuss whether different, cancer stage specific CSCs exist and if, how these particular cell types might originate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dittmar T, Heyder C, Gloria-Maercker E, et al. (2008) Adhesion molecules and chemokines: the navigation system for circulating tumor (stem) cells to metastasize in an organ-specific manner. Clin Exp Metastasis 25: 11–32

    Article  PubMed  CAS  Google Scholar 

  2. Heyder C, Gloria-Maercker E, Hatzmann W, et al. (2005) Role of the beta1-integrin subunit in the adhesion, extravasation and migration of T24 human bladder carcinoma cells. Clin Exp Metastasis 22: 99–106

    Article  PubMed  CAS  Google Scholar 

  3. Fearon ER and Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61: 759–767

    Article  PubMed  CAS  Google Scholar 

  4. Li R, Sonik A, Stindl R, et al. (2000) Aneuploidy vs. gene mutation hypothesis of cancer: recent study claims mutation but is found to support aneuploidy. Proc Natl Acad Sci USA 97: 3236–3241

    Article  PubMed  CAS  Google Scholar 

  5. Boveri T (1902/1964) On multipolar mitosis as a means of analysis of the cell nucleus. In: Willier BH and Oppenheimer JM (Eds.) Foundations of Experimental Embryology, 1st edn, Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  6. Hansemann D (1890) Ueber asymmetrische Zelltheilung in Epithelkrebsen und deren biologische Bedeutung. Virchows Arch Pathol Anat 119: 299–326

    Google Scholar 

  7. Clarke MF, Dick JE, Dirks PB, et al. (2006) Cancer stem cells—perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res 66: 9339–9344

    Article  PubMed  CAS  Google Scholar 

  8. Tang DG, Patrawala L, Calhoun T, et al. (2007) Prostate cancer stem/progenitor cells: identification, characterization, and implications. Mol Carcinog 46: 1–14

    Article  PubMed  CAS  Google Scholar 

  9. Trosko JE and Chang CC (1989) Stem cell theory of carcinogenesis. Toxicol Lett 49: 283–295

    Article  PubMed  CAS  Google Scholar 

  10. Wicha MS, Liu S and Dontu G (2006) Cancer stem cells: an old idea—a paradigm shift. Cancer Res 66: 1883–1890; discussion 1895–1886

    Article  PubMed  CAS  Google Scholar 

  11. Sell S (2004) Stem cell origin of cancer and differentiation therapy. Crit Rev Oncol Hematol 51: 1–28

    Article  PubMed  Google Scholar 

  12. Virchow R (1855) Editorial. Virchows Arch Pathol Anat Physiol Klin Med 3: 23

    Google Scholar 

  13. Cohnheim J (1867) Ueber entzuendung und eiterung. Path Anat Physiol Klin Med 40: 1–79

    Article  Google Scholar 

  14. Cohnheim J (1875) Congenitales, quergestreiftes Muskelsarkom der Nieren. Virchows Arch 65: 64

    Article  Google Scholar 

  15. Durante F (1874) Nesso fisio-pathologico tra la struttura dei nei materni e la genesi di alcuni tumori maligni. Arch Memor Observ Chir pract 11: 217–226

    Google Scholar 

  16. Pierce GB (1967) Teratocarcinoma: model for a developmental concept of cancer. Curr Top Dev Biol 2: 223–246

    Article  PubMed  CAS  Google Scholar 

  17. Sell S and Pierce GB (1994) Maturation arrest of stem cell differentiation is a common pathway for the cellular origin of teratocarcinomas and epithelial cancers. Lab Invest 70: 6–22

    PubMed  CAS  Google Scholar 

  18. Potter VR (1978) Phenotypic diversity in experimental hepatomas: the concept of partially blocked ontogeny. The 10th Walter Hubert Lecture. Br J Cancer 38: 1–23

    Article  PubMed  CAS  Google Scholar 

  19. Trosko JE (2003) The role of stem cells and gap junctional intercellular communication in carcinogenesis. J Biochem Mol Biol 36: 43–48

    Article  PubMed  CAS  Google Scholar 

  20. Hamburger A and Salmon SE (1977) Primary bioassay of human myeloma stem cells. J Clin Invest 60: 846–854

    Article  PubMed  CAS  Google Scholar 

  21. Hamburger AW and Salmon SE (1977) Primary bioassay of human tumor stem cells. Science 197: 461–463

    Article  PubMed  CAS  Google Scholar 

  22. Park CH, Bergsagel DE and McCulloch EA (1971) Mouse myeloma tumor stem cells: a primary cell culture assay. J Natl Cancer Inst 46: 411–422

    PubMed  CAS  Google Scholar 

  23. Southam CM and Brunschwig A (1961) Quantitative studies of autotransplantation of human cancer. Cancer 14: 971–978

    Article  Google Scholar 

  24. Reya T, Morrison SJ, Clarke MF, et al. (2001) Stem cells, cancer, and cancer stem cells. Nature 414: 105–111

    Article  PubMed  CAS  Google Scholar 

  25. Bonnet D and Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3: 730–737

    Article  PubMed  CAS  Google Scholar 

  26. Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100: 3983–3988

    Article  PubMed  CAS  Google Scholar 

  27. Jamieson CH, Ailles LE, Dylla SJ, et al. (2004) Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 351: 657–667

    Article  PubMed  CAS  Google Scholar 

  28. Singh SK, Hawkins C, Clarke ID, et al. (2004) Identification of human brain tumour initiating cells. Nature 432: 396–401

    Article  PubMed  CAS  Google Scholar 

  29. Schatton T, Murphy GF, Frank NY, et al. (2008) Identification of cells initiating human melanomas. Nature 451: 345–349

    Article  PubMed  CAS  Google Scholar 

  30. O‘Brien CA, Pollett A, Gallinger S, et al. (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445: 106–110

    Article  PubMed  CAS  Google Scholar 

  31. Dalerba P, Dylla SJ, Park IK, et al. (2007) Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA 104: 10158–10163

    Article  PubMed  CAS  Google Scholar 

  32. Li C, Heidt DG, Dalerba P, et al. (2007) Identification of pancreatic cancer stem cells. Cancer Res 67: 1030–1037

    Article  PubMed  CAS  Google Scholar 

  33. Kim CF, Jackson EL, Woolfenden AE, et al. (2005) Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121: 823–835

    Article  PubMed  CAS  Google Scholar 

  34. Collins AT, Berry PA, Hyde C, et al. (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65: 10946–10951

    Article  PubMed  CAS  Google Scholar 

  35. Huff CA, Matsui W, Smith BD, et al. (2006) The paradox of response and survival in cancer therapeutics. Blood 107: 431–434

    Article  PubMed  CAS  Google Scholar 

  36. Blagosklonny MV (2005) Why therapeutic response may not prolong the life of a cancer patient: selection for oncogenic resistance. Cell Cycle 4: 1693–1698

    Article  PubMed  CAS  Google Scholar 

  37. Eyler CE and Rich JN (2008) Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. J Clin Oncol 26: 2839–2845

    Article  PubMed  CAS  Google Scholar 

  38. Rich JN (2007) Cancer stem cells in radiation resistance. Cancer Res 67: 8980–8984

    Article  PubMed  CAS  Google Scholar 

  39. Shervington A and Lu C (2008) Expression of multidrug resistance genes in normal and cancer stem cells. Cancer Invest 26: 535–542

    Article  PubMed  CAS  Google Scholar 

  40. Li F, Tiede B, Massague J, et al. (2007) Beyond tumorigenesis: cancer stem cells in metastasis. Cell Res 17: 3–14

    Article  PubMed  CAS  Google Scholar 

  41. Hermann PC, Huber SL, Herrler T, et al. (2007) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1: 313–323

    Article  PubMed  CAS  Google Scholar 

  42. Bjerkvig R, Tysnes BB, Aboody KS, et al. (2005) Opinion: the origin of the cancer stem cell: current controversies and new insights. Nat Rev Cancer 5: 899–904

    Article  PubMed  CAS  Google Scholar 

  43. Singh SK, Clarke ID, Terasaki M, et al. (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63: 5821–5828

    PubMed  CAS  Google Scholar 

  44. Uchida N, Buck DW, He D, et al. (2000) Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci USA 97: 14720–14725

    Article  PubMed  CAS  Google Scholar 

  45. Lessard J and Sauvageau G (2003) Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 423: 255–260

    Article  PubMed  CAS  Google Scholar 

  46. Park IK, Qian D, Kiel M, et al. (2003) Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423: 302–305

    Article  PubMed  CAS  Google Scholar 

  47. Hemmati HD, Nakano I, Lazareff JA, et al. (2003) Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA 100: 15178–15183

    Article  PubMed  CAS  Google Scholar 

  48. Liu S, Dontu G, Mantle ID, et al. (2006) Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 66: 6063–6071

    Article  PubMed  CAS  Google Scholar 

  49. Molofsky AV, Pardal R, Iwashita T, et al. (2003) Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 425: 962–967

    Article  PubMed  CAS  Google Scholar 

  50. Richardson GD, Robson CN, Lang SH, et al. (2004) CD133, a novel marker for human prostatic epithelial stem cells. J Cell Sci 117: 3539–3545

    Article  PubMed  CAS  Google Scholar 

  51. Patrawala L, Calhoun-Davis T, Schneider-Broussard R, et al. (2007) Hierarchical organization of prostate cancer cells in xenograft tumors: the CD44+alpha2beta1+ cell population is enriched in tumor-initiating cells. Cancer Res 67: 6796–6805

    Article  PubMed  CAS  Google Scholar 

  52. Shackleton M, Vaillant F, Simpson KJ, et al. (2006) Generation of a functional mammary gland from a single stem cell. Nature 439: 84–88

    Article  PubMed  CAS  Google Scholar 

  53. Houghton J, Stoicov C, Nomura S, et al. (2004) Gastric cancer originating from bone marrow-derived cells. Science 306: 1568–1571

    Article  PubMed  CAS  Google Scholar 

  54. Houghton J (2007) Bone-marrow-derived cells and cancer—an opportunity for improved therapy. Nature Clin Pract 4: 2–3

    Article  Google Scholar 

  55. Liu C, Chen Z, Chen Z, et al. (2006) Multiple tumor types may originate from bone marrow-derived cells. Neoplasia 8: 716–724

    Article  PubMed  CAS  Google Scholar 

  56. Jaiswal S, Traver D, Miyamoto T, et al. (2003) Expression of BCR/ABL and BCL-2 in myeloid progenitors leads to myeloid leukemias. Proc Natl Acad Sci USA 100: 10002–10007

    Article  PubMed  CAS  Google Scholar 

  57. Li L and Neaves WB (2006) Normal stem cells and cancer stem cells: the niche matters. Cancer Res 66: 4553–4557

    Article  PubMed  CAS  Google Scholar 

  58. Reya T, Duncan AW, Ailles L, et al. (2003) A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423: 409–414.

    Article  PubMed  CAS  Google Scholar 

  59. Krivtsov AV, Twomey D, Feng Z, et al. (2006) Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 442: 818–822

    Article  PubMed  CAS  Google Scholar 

  60. Vescovi AL, Galli R and Reynolds BA (2006) Brain tumour stem cells. Nat Rev Cancer 6: 425–436

    Article  PubMed  CAS  Google Scholar 

  61. Boecker W and Buerger H (2003) Evidence of progenitor cells of glandular and myoepithelial cell lineages in the human adult female breast epithelium: a new progenitor (adult stem) cell concept. Cell Prolif 36(Suppl 1): 73–84

    Article  PubMed  Google Scholar 

  62. Rudland PS, Barraclough R, Fernig D, et al. (1997) Mammary stem cells in normal development and cancer. In: Potten C (Eds.) Stem Cells and Cancer, 1st edn, Academic Press, London

    Google Scholar 

  63. Bocker W, Moll R, Poremba C, et al. (2002) Common adult stem cells in the human breast give rise to glandular and myoepithelial cell lineages: a new cell biological concept. Lab Invest 82: 737–746

    PubMed  Google Scholar 

  64. Boecker W, Moll R, Dervan P, et al. (2002) Usual ductal hyperplasia of the breast is a committed stem (progenitor) cell lesion distinct from atypical ductal hyperplasia and ductal carcinoma in situ. J Pathol 198: 458–467

    Article  PubMed  Google Scholar 

  65. Clarke CL, Sandle J, Parry SC, et al. (2004) Cytokeratin 5/6 in normal human breast: lack of evidence for a stem cell phenotype. J Pathol 204: 147–152

    Article  PubMed  CAS  Google Scholar 

  66. Stingl J, Eaves CJ, Zandieh I, et al. (2001) Characterization of bipotent mammary epithelial progenitor cells in normal adult human breast tissue. Breast Cancer Res Treat 67: 93–109

    Article  PubMed  CAS  Google Scholar 

  67. Stingl J, Eaves CJ, Kuusk U, et al. (1998) Phenotypic and functional characterization in vitro of a multipotent epithelial cell present in the normal adult human breast. Differentiation 63: 201–213

    Article  PubMed  CAS  Google Scholar 

  68. Dontu G, Abdallah WM, Foley JM, et al. (2003) In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17: 1253–1270

    Article  PubMed  CAS  Google Scholar 

  69. Dimri GP, Martinez JL, Jacobs JJ, et al. (2002) The Bmi-1 oncogene induces telomerase activity and immortalizes human mammary epithelial cells. Cancer Res 62: 4736–4745

    PubMed  CAS  Google Scholar 

  70. Liu S, Dontu G and Wicha MS (2005) Mammary stem cells, self-renewal pathways, and carcinogenesis. Breast Cancer Res 7: 86–95

    Article  PubMed  CAS  Google Scholar 

  71. Duesberg P, Fabarius A and Hehlmann R (2004) Aneuploidy, the primary cause of the multilateral genomic instability of neoplastic and preneoplastic cells. IUBMB Life 56: 65–81

    Article  PubMed  CAS  Google Scholar 

  72. Sotillo R, Hernando E, Diaz-Rodriguez E, et al. (2007) Mad2 overexpression promotes aneuploidy and tumorigenesis in mice. Cancer Cell 11: 9–23

    Article  PubMed  CAS  Google Scholar 

  73. Weaver BA, Silk AD, Montagna C, et al. (2007) Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell 11: 25–36

    Article  PubMed  CAS  Google Scholar 

  74. Wang X, Willenbring H, Akkari Y, et al. (2003) Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature 422: 897–901

    Article  PubMed  CAS  Google Scholar 

  75. Vassilopoulos G, Wang PR and Russell DW (2003) Transplanted bone marrow regenerates liver by cell fusion. Nature 422: 901–904

    Article  PubMed  CAS  Google Scholar 

  76. Willenbring H, Bailey AS, Foster M, et al. (2004) Myelomonocytic cells are sufficient for therapeutic cell fusion in liver. Nat Med 10: 744–748

    Article  PubMed  CAS  Google Scholar 

  77. Jorquera R and Tanguay RM (2001) Fumarylacetoacetate, the metabolite accumulating in hereditary tyrosinemia, activates the ERK pathway and induces mitotic abnormalities and genomic instability. Hum Mol Genet 10: 1741–1752

    Article  PubMed  CAS  Google Scholar 

  78. Kubota K, Soeda J, Misawa R, et al. (2008) Bone marrow-derived cells fuse with hepatic oval cells but are not involved in hepatic tumorigenesis in the choline-deficient ethionine-supplemented diet rat model. Carcinogenesis 29: 448–454

    Article  PubMed  CAS  Google Scholar 

  79. Fidler IJ (2003) The pathogenesis of cancer metastasis: the 'seed and soil' hypothesis revisited. Nat Rev Cancer 3: 453–458

    Article  PubMed  CAS  Google Scholar 

  80. Muller A, Homey B, Soto H, et al. (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410: 50–56

    Article  PubMed  CAS  Google Scholar 

  81. Schluter K, Gassmann P, Enns A, et al. (2006) Organ-specific metastatic tumor cell adhesion and extravasation of colon carcinoma cells with different metastatic potential. Am J Pathol 169: 1064–1073

    Article  PubMed  CAS  Google Scholar 

  82. Balic M, Lin H, Young L, et al. (2006) Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clin Cancer Res 12: 5615–5621

    Article  PubMed  CAS  Google Scholar 

  83. Abraham BK, Fritz P, McClellan M, et al. (2005) Prevalence of CD44+/CD24–/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis. Clin Cancer Res 11: 1154–1159

    PubMed  CAS  Google Scholar 

  84. Wehler T, Wolfert F, Schimanski CC, et al. (2006) Strong expression of chemokine receptor CXCR4 by pancreatic cancer correlates with advanced disease. Oncol Rep 16: 1159–1164

    PubMed  CAS  Google Scholar 

  85. Husemann Y, Geigl JB, Schubert F, et al. (2008) Systemic spread is an early step in breast cancer. Cancer Cell 13: 58–68

    Article  PubMed  CAS  Google Scholar 

  86. Di Carlo E, Diodoro MG, Boggio K, et al. (1999) Analysis of mammary carcinoma onset and progression in HER-2/neu oncogene transgenic mice reveals a lobular origin. Lab Invest 79: 1261–1269

    PubMed  CAS  Google Scholar 

  87. Balkwill F and Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357: 539–545

    Article  PubMed  CAS  Google Scholar 

  88. Dvorak HF (1986) Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315: 1650–1659

    Article  PubMed  CAS  Google Scholar 

  89. Dittmar T, Seidel J, Zaenker KS, et al. (2006) Carcinogenesis driven by bone marrow-derived stem cells. Contrib Microbiol 13: 156–169

    Article  PubMed  Google Scholar 

  90. Pawelek JM and Chakraborty AK (2008) Fusion of tumour cells with bone marrow-derived cells: a unifying explanation for metastasis. Nat Rev Cancer 8: 377–386

    Article  PubMed  CAS  Google Scholar 

  91. Rachkovsky M, Sodi S, Chakraborty A, et al. (1998) Melanoma x macrophage hybrids with enhanced metastatic potential. Clin Exp Metastasis 16: 299–312

    Article  PubMed  CAS  Google Scholar 

  92. Chakraborty AK, Sodi S, Rachkovsky M, et al. (2000) A spontaneous murine melanoma lung metastasis comprised of host x tumor hybrids. Cancer Res 60: 2512–2519

    PubMed  CAS  Google Scholar 

  93. Rizvi AZ, Swain JR, Davies PS, et al. (2006) Bone marrow-derived cells fuse with normal and transformed intestinal stem cells. Proc Natl Acad Sci USA 103: 6321–6325

    Article  PubMed  CAS  Google Scholar 

  94. Gupta GP, Nguyen DX, Chiang AC, et al. (2007) Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature 446: 765–770

    Article  PubMed  CAS  Google Scholar 

  95. Kang Y, Siegel PM, Shu W, et al. (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3: 537–549

    Article  PubMed  CAS  Google Scholar 

  96. Minn AJ, Gupta GP, Padua D, et al. (2007) Lung metastasis genes couple breast tumor size and metastatic spread. Proc Natl Acad Sci USA 104: 6740–6745

    Article  PubMed  CAS  Google Scholar 

  97. Minn AJ, Gupta GP, Siegel PM, et al. (2005) Genes that mediate breast cancer metastasis to lung. Nature 436: 518–524

    Article  PubMed  CAS  Google Scholar 

  98. Minn AJ, Kang Y, Serganova I, et al. (2005) Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J Clin Invest 115: 44–55

    PubMed  CAS  Google Scholar 

  99. Gupta GP and Massague J (2006) Cancer metastasis: building a framework. Cell 127: 679–695

    Article  PubMed  CAS  Google Scholar 

  100. Seidel J, Batistin E, Schwitalla S, et al. (2007) Cancer Cell + Stem Cell = Cancer Stem Cell? In: Saitama H (Eds.) New Cell Differentiation Research Topics, edn, Nova Science Publishers, Hauppauge, NY

    Google Scholar 

  101. Woodward WA, Chen MS, Behbod F, et al. (2007) WNT/beta-catenin mediates radiation resistance of mouse mammary progenitor cells. Proc Natl Acad Sci USA 104: 618–623

    Article  PubMed  CAS  Google Scholar 

  102. Phillips TM, McBride WH and Pajonk F (2006) The response of CD24(–/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst 98: 1777–1785

    Article  PubMed  Google Scholar 

  103. Hirschmann-Jax C, Foster AE, Wulf GG, et al. (2004) A distinct "side population" of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci USA 101: 14228–14233

    Article  PubMed  CAS  Google Scholar 

  104. Ho MM, Ng AV, Lam S, et al. (2007) Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res 67: 4827–4833

    Article  PubMed  CAS  Google Scholar 

  105. Patrawala L, Calhoun T, Schneider-Broussard R, et al. (2005) Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2- cancer cells are similarly tumorigenic. Cancer Res 65: 6207–6219

    Article  PubMed  CAS  Google Scholar 

  106. Liu G, Yuan X, Zeng Z, et al. (2006) Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 5: 67

    Article  PubMed  CAS  Google Scholar 

  107. Magni M, Shammah S, Schiro R, et al. (1996) Induction of cyclophosphamide-resistance by aldehyde-dehydrogenase gene transfer. Blood 87: 1097–1103

    PubMed  CAS  Google Scholar 

  108. Pearce DJ, Taussig D, Simpson C, et al. (2005) Characterization of cells with a high aldehyde dehydrogenase activity from cord blood and acute myeloid leukemia samples. Stem Cells 23: 752–760

    Article  PubMed  CAS  Google Scholar 

  109. Ginestier C, Hur MH, Charafe-Jauffret E, et al. (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1: 555–567

    Article  PubMed  CAS  Google Scholar 

  110. Clarke MF and Fuller M (2006) Stem cells and cancer: two faces of eve. Cell 124: 1111–1115

    Article  PubMed  CAS  Google Scholar 

  111. Guan Y and Hogge DE (2000) Proliferative status of primitive hematopoietic progenitors from patients with acute myelogenous leukemia (AML). Leukemia 14: 2135–2141

    Article  PubMed  CAS  Google Scholar 

  112. Holyoake T, Jiang X, Eaves C, et al. (1999) Isolation of a highly quiescent subpopulation of primitive leukemic cells in chronic myeloid leukemia. Blood 94: 2056–2064

    PubMed  CAS  Google Scholar 

  113. Shafee N, Smith CR, Wei S, et al. (2008) Cancer stem cells contribute to cisplatin resistance in Brca1/p53-mediated mouse mammary tumors. Cancer Res 68: 3243–3250

    Article  PubMed  CAS  Google Scholar 

  114. Alison MR, Poulsom R, Otto WR, et al. (2004) Recipes for adult stem cell plasticity: fusion cuisine or readymade? J Clin Pathol 57: 113–120

    Article  PubMed  CAS  Google Scholar 

  115. Camargo FD, Chambers SM and Goodell MA (2004) Stem cell plasticity: from transdifferentiation to macrophage fusion. Cell Prolif 37: 55–65

    Article  PubMed  CAS  Google Scholar 

  116. Eisenberg LM and Eisenberg CA (2003) Stem cell plasticity, cell fusion, and transdifferentiation. Birth Defects Res Part C Embryo Today 69: 209–218

    Article  CAS  Google Scholar 

  117. Aichel O (1991) Über Zellverschmelzung mit quantitativ abnormer Chromosomenverteilung als Ursache der Geschwulstbildung. In: Roux W (Eds.) Vorträge und Aufsätze über Entwicklungsmechanik der Organismen, edn, Wilhelm Engelmann, Leipzig, Germany

    Google Scholar 

  118. Duelli D and Lazebnik Y (2003) Cell fusion: a hidden enemy? Cancer Cell 3: 445–448

    Article  PubMed  CAS  Google Scholar 

  119. Barski G and Cornefert F (1962) Characteristics of "hybrid"-type clonal cell lines obtained from mixed cultures in vitro. J Natl Cancer Inst 28: 801–821

    PubMed  CAS  Google Scholar 

  120. Islam MQ, Meirelles Lda S, Nardi NB, et al. (2006) Polyethylene glycol-mediated fusion between primary mouse mesenchymal stem cells and mouse fibroblasts generates hybrid cells with increased proliferation and altered differentiation. Stem Cells Dev 15: 905–919

    Article  PubMed  CAS  Google Scholar 

  121. Miller FR, Mohamed AN and McEachern D (1989) Production of a more aggressive tumor cell variant by spontaneous fusion of two mouse tumor subpopulations. Cancer Res 49: 4316–4321

    PubMed  CAS  Google Scholar 

  122. Duelli DM and Lazebnik YA (2000) Primary cells suppress oncogene-dependent apoptosis. Nat Cell Biol 2: 859–862

    Article  PubMed  CAS  Google Scholar 

  123. Ogle BM, Cascalho M and Platt JL (2005) Biological implications of cell fusion. Nat Rev Mol Cell Biol 6: 567–575

    Article  PubMed  CAS  Google Scholar 

  124. Vassilopoulos G and Russell DW (2003) Cell fusion: an alternative to stem cell plasticity and its therapeutic implications. Curr Opin Genet Dev 13: 480–485

    Article  PubMed  CAS  Google Scholar 

  125. Chang CC, Sun W, Cruz A, et al. (2001) A human breast epithelial cell type with stem cell characteristics as target cells for carcinogenesis. Radiat Res 155: 201–207

    Article  PubMed  CAS  Google Scholar 

  126. Schwitalla S, Seidel J, Keil S, et al. (2008) Breast stem cells spontaneously fuse with breast cancer cells: impacts on Cancer Stem Cell formation? Proc Amer Assoc Cancer Res 49: #5007

    Google Scholar 

  127. Dean M, Fojo T and Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5: 275–284

    Article  PubMed  CAS  Google Scholar 

  128. Pawelek JM (2000) Tumour cell hybridization and metastasis revisited. Melanoma Res 10: 507–514

    Article  PubMed  CAS  Google Scholar 

  129. Haenssle HA (2005) Vaccination therapy with tumor-dendritic cell hybrids: a promising therapeutic approach? Curr Opin Investig Drugs 6: 1240–1245

    PubMed  Google Scholar 

  130. Rosenblatt J, Kufe D and Avigan D (2005) Dendritic cell fusion vaccines for cancer immunotherapy. Expert Opin Biol Ther 5: 703–715

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the “Verein zur Förderung der Krebsforschung e.V.”, Heidelberg, Germany and the Fritz-Bender-Foundation, Munich, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Dittmar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Dittmar, T. et al. (2009). “One for All” or “All for One”? – The Necessity of Cancer Stem Cell Diversity in Metastasis Formation and Cancer Relapse. In: Dittmar, T., Zanker, K. (eds) Stem Cell Biology in Health and Disease. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3040-5_15

Download citation

Publish with us

Policies and ethics