Skip to main content

The Chronically Inflamed Microenvironment and Cancer Stem Cells

  • Chapter
  • First Online:
Stem Cell Biology in Health and Disease
  • 1010 Accesses

Abstract

The notion that tumors contain a population of cells termed cancer stem cells, or cancer initiating cells has been gaining momentum over the past several years. It is postulated that much like a normal organ in the body, tumors contain a population of stem cells which are responsible for driving tumor growth, invasion and metastasis. This becomes of paramount clinical importance because our present therapies often times shrink tumors, but do not prevent their recurrence or metastatic spread. This behavior of tumors suggests that a population of cells within the tumor capable of driving tumor growth is insensitive to our current therapies and survives to reestablish disease. Therefore, understanding the biology of the cancer stem cell which is believed responsible for this tumor re-growth, will allow targeted therapy to better treat cancers. This chapter reviews the cancer stem cell hypotheses, and investigates the potential sources for the cancer stem cell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balkwill F and Mantovani A (2001) Inflammation and cancer: Back to Virchow? Lancet 357: 539–545

    Article  PubMed  CAS  Google Scholar 

  2. Rather JL (1978) The genesis of cancer: A study in the history of ideas. The Johns Hopkins University Press, Baltimore, MD

    Google Scholar 

  3. Ford CE, Hamerton JL, Barnes DW, et al. (1956) Cytological identification of radiation-chimaeras. Nature 177: 452–454

    Article  PubMed  CAS  Google Scholar 

  4. Marshak DR (2001) Introduction: Stem cell biology. CHSL Press, Woodbury, NY

    Google Scholar 

  5. Potten CS and Loeffler M (1990) Stem cells: Attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development 110: 1001–1020

    PubMed  CAS  Google Scholar 

  6. Siminovitch L, McCulloch EA and Till JE (1963) The distribution of colony-forming cells among spleen colonies. J Cell Physiol 62: 327–336

    Article  PubMed  CAS  Google Scholar 

  7. Spangrude GJ, Heimfeld S and Weissman IL (1988) Purification and characterization of mouse hematopoietic stem cells. Science 241: 58–62

    Article  PubMed  CAS  Google Scholar 

  8. Till JE and Mc CE (1961) A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 14: 213–222

    Article  PubMed  CAS  Google Scholar 

  9. Pierce GB (1974) Neoplasms, differentiations and mutations. Am J Pathol 77: 103–118

    PubMed  CAS  Google Scholar 

  10. Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100: 3983–3988

    Article  PubMed  CAS  Google Scholar 

  11. Collins AT, Berry PA, Hyde C, et al. (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65: 10946–10951

    Article  PubMed  CAS  Google Scholar 

  12. Fang D, Nguyen TK, Leishear K, et al. (2005) A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res 65: 9328–9337

    Article  PubMed  CAS  Google Scholar 

  13. Gibbs CP, Kukekov VG, Reith JD, et al. (2005) Stem-like cells in bone sarcomas: Implications for tumorigenesis. Neoplasia 7: 967–976

    Article  PubMed  CAS  Google Scholar 

  14. Sanai N, Alvarez-Buylla A and Berger MS (2005) Neural stem cells and the origin of gliomas. N Engl J Med 353: 811–822

    Article  PubMed  CAS  Google Scholar 

  15. Singh SK, Clarke ID, Terasaki M, et al. (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63: 5821–5828

    PubMed  CAS  Google Scholar 

  16. Singh SK, Hawkins C, Clarke ID, et al. (2004) Identification of human brain tumour initiating cells. Nature 432: 396–401

    Article  PubMed  CAS  Google Scholar 

  17. Aractingi S, Kanitakis J, Euvrard S, et al. (2005) Skin carcinoma arising from donor cells in a kidney transplant recipient. Cancer Res 65: 1755–1760

    Article  PubMed  CAS  Google Scholar 

  18. Barozzi P, Luppi M, Facchetti F, et al. (2003) Post-transplant Kaposi sarcoma originates from the seeding of donor-derived progenitors. Nat Med 9: 554–561

    Article  PubMed  CAS  Google Scholar 

  19. Chakraborty A, Lazova R, Davies S, et al. (2004) Donor DNA in a renal cell carcinoma metastasis from a bone marrow transplant recipient. Bone Marrow Transplant 34: 183–186

    Article  PubMed  CAS  Google Scholar 

  20. Golfinopouloss V, Pentheroudakis G, Kamakari S, et al. (2009) Donor-derived breast cancer in a bone marrow transplantation recipient. Breast Cancer Res Treat 113: 211–213

    Google Scholar 

  21. Houghton J, Stoicov C, Nomura S, et al. (2004) Gastric cancer originating from bone marrow-derived cells. Science 306: 1568–1571

    Article  PubMed  CAS  Google Scholar 

  22. Li H, Fan X, Kovi RC, et al. (2007) Spontaneous expression of embryonic factors and p53 point mutations in aged mesenchymal stem cells: a model of age-related tumorigenesis in mice. Cancer Res 67: 10889–10898

    Article  PubMed  CAS  Google Scholar 

  23. Morath C, Rohmeiss P, Schwenger V, et al. (2005) Transmission of donor-derived small-cell carcinoma cells by a nontumor-bearing allograft. Transplantation 80: 540–542

    Article  PubMed  Google Scholar 

  24. Dome B, Timar J, Dobos J, et al. (2006) Identification and clinical significance of circulating endothelial progenitor cells in human non-small cell lung cancer. Cancer Res 66: 7341–7347

    Article  PubMed  CAS  Google Scholar 

  25. Ho JW, Pang RW, Lau C, et al. (2006) Significance of circulating endothelial progenitor cells in hepatocellular carcinoma. Hepatology 44: 836–843

    Article  PubMed  CAS  Google Scholar 

  26. Kaplan RN, Riba RD, Zacharoulis S, et al. (2005) VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature 438: 820–827

    Article  PubMed  CAS  Google Scholar 

  27. Karnoub AE, Dash AB, Vo AP, et al. (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449: 557–563

    Article  PubMed  CAS  Google Scholar 

  28. Peters BA, Diaz LA, Polyak K, et al. (2005) Contribution of bone marrow-derived endothelial cells to human tumor vasculature. Nat Med 11: 261–262

    Article  PubMed  CAS  Google Scholar 

  29. Macarthur M, Hold GL and El-Omar EM (2004) Inflammation and Cancer II. Role of chronic inflammation and cytokine gene polymorphisms in the pathogenesis of gastrointestinal malignancy. Am J Physiol Gastrointest Liver Physiol 286: G515–520

    Article  Google Scholar 

  30. El-Omar EM, Rabkin CS, Gammon MD, et al. (2003) Increased risk of noncardia gastric cancer associated with proinflammatory cytokine gene polymorphisms. Gastroenterology 124: 1193–1201

    Article  PubMed  CAS  Google Scholar 

  31. Roberts RA and Kimber I (1999) Cytokines in non-genotoxic hepatocarcinogenesis. Carcinogenesis 20: 1397–1401

    Article  PubMed  CAS  Google Scholar 

  32. Tanaka Y, Furuta T, Suzuki S, et al. (2003) Impact of interleukin-1beta genetic polymorphisms on the development of hepatitis C virus-related hepatocellular carcinoma in Japan. J Infect Dis 187: 1822–1825

    Article  PubMed  CAS  Google Scholar 

  33. Bryder D, Rossi DJ and Weissman IL (2006) Hematopoietic stem cells: the paradigmatic tissue-specific stem cell. Am J Pathol 169: 338–346

    Article  PubMed  CAS  Google Scholar 

  34. Morrison SJ and Kimble J (2006) Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 441: 1068–1074

    Article  PubMed  CAS  Google Scholar 

  35. Sharpless NE and DePinho RA (2004) Telomeres, stem cells, senescence, and cancer. J Clin Invest 113: 160–168

    PubMed  CAS  Google Scholar 

  36. Ruzankina Y, Pinzon-Guzman C, Asare A, et al. (2007) Deletion of the developmentally essential gene ATR in adult mice leads to age-related phenotypes and stem cell loss. Cell stem cell 1: 113–126

    Article  PubMed  CAS  Google Scholar 

  37. Houghton J (2007) Bone-marrow-derived cells and cancer – an opportunity for improved therapy. Nature clinical practice 4: 2–3

    Article  PubMed  Google Scholar 

  38. Greten FR and Karin M (2004) The IKK/NF-kappaB activation pathway – a target for prevention and treatment of cancer. Cancer Lett 206: 193–199

    Article  PubMed  CAS  Google Scholar 

  39. Maeda A, Ebata T, Matsunaga K, et al. (2005) Primary liver cancer with bidirectional differentiation into hepatocytes and biliary epithelium. Journal of hepato-biliary-pancreatic surgery 12: 484–487

    Article  PubMed  Google Scholar 

  40. Droll L, Song YH, Krohn A, et al. (2008) TNFalpha protects tissue resident stem cells from H2O2 induced apoptosis through a novel NF-small ka, CyrillicB p50/p50 homodimer mediated signaling pathway. Biochem Biophys Res Commun 371: 626–629

    Article  PubMed  CAS  Google Scholar 

  41. Crisostomo PR, Wang Y, Markel TA, et al. (2008) Human mesenchymal stem cells stimulated by TNF-alpha, LPS, or hypoxia produce growth factors by an NF kappa B- but not JNK-dependent mechanism. Am J Physiol Cell Physiol 294: C675–682

    Article  Google Scholar 

  42. Kollias G, Douni E, Kassiotis G, et al. (1999) On the role of tumor necrosis factor and receptors in models of multiorgan failure, rheumatoid arthritis, multiple sclerosis and inflammatory bowel disease. Immunol Rev 169: 175–194

    Article  PubMed  CAS  Google Scholar 

  43. Leek RD, Landers R, Fox SB, et al. (1998) Association of tumour necrosis factor alpha and its receptors with thymidine phosphorylase expression in invasive breast carcinoma. Br J Cancer 77: 2246–2251

    Article  PubMed  CAS  Google Scholar 

  44. Lejeune FJ, Ruegg C and Lienard D (1998) Clinical applications of TNF-alpha in cancer. Curr Opin Immunol 10: 573–580

    Article  PubMed  CAS  Google Scholar 

  45. Malik ST, Griffin DB, Fiers W, et al. (1989) Paradoxical effects of tumour necrosis factor in experimental ovarian cancer. Int J Cancer 44: 918–925

    Article  PubMed  CAS  Google Scholar 

  46. Malik ST, Naylor MS, East N, et al. (1990) Cells secreting tumour necrosis factor show enhanced metastasis in nude mice. Eur J Cancer 26: 1031–1034

    Article  PubMed  CAS  Google Scholar 

  47. O’Byrne KJ, Dalgleish AG, Browning MJ, et al. (2000) The relationship between angiogenesis and the immune response in carcinogenesis and the progression of malignant disease. Eur J Cancer 36: 151–169

    Article  PubMed  Google Scholar 

  48. Grayson WL, Zhao F, Bunnell B, et al. (2007) Hypoxia enhances proliferation and tissue formation of human mesenchymal stem cells. Biochem Biophys Res Commun 358: 948–953

    Article  PubMed  CAS  Google Scholar 

  49. Coussens LM and Werb Z (2002) Inflammation and cancer. Nature 420: 860–867

    Article  PubMed  CAS  Google Scholar 

  50. Faller G and Kirchner T (2005) Immunological and morphogenic basis of gastric mucosa atrophy and metaplasia. Virchows Arch 446: 1–9

    Article  PubMed  CAS  Google Scholar 

  51. Whitcomb DC (2004) Inflammation and Cancer V. Chronic pancreatitis and pancreatic cancer. Am J Physiol Gastrointest Liver Physiol 287: G315–319

    Article  Google Scholar 

  52. De Marzo AM, Nakai Y and Nelson WG (2007) Inflammation, atrophy, and prostate carcinogenesis. Urologic Oncology 25: 398–400

    PubMed  Google Scholar 

  53. Cai X, Carlson J, Stoicov C, et al. (2005) Helicobacter felis eradication restores normal architecture and inhibits gastric cancer progression in C57BL/6 mice. Gastroenterology 128: 1937–1952

    Article  PubMed  CAS  Google Scholar 

  54. Correa P (1992) Human gastric carcinogenesis: a multistep and multifactorial process – First American Cancer Society award lecture on cancer epidemiology and prevention. Cancer Res 52: 6735–6740

    PubMed  CAS  Google Scholar 

  55. Fox JG and Wang TC (2007) Inflammation, atrophy, and gastric cancer. J Clin Invest 117: 60–69

    Article  PubMed  CAS  Google Scholar 

  56. Franco EL and Rohan TE (2002) Cancer precursors: Epidemiology, Detection and Prevention. Springer, New York

    Google Scholar 

  57. Hiratsuka S, Watanabe A, Aburatani H, et al. (2006) Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat Cell Biol 8: 1369–1375

    Article  PubMed  CAS  Google Scholar 

  58. Olaso E, Salado C, Egilegor E, et al. (2003) Proangiogenic role of tumor-activated hepatic stellate cells in experimental melanoma metastasis. Hepatology 37: 674–685

    Article  PubMed  CAS  Google Scholar 

  59. Olaso E, Santisteban A, Bidaurrazaga J, et al. (1997) Tumor-dependent activation of rodent hepatic stellate cells during experimental melanoma metastasis. Hepatology 26: 634–642

    Article  PubMed  CAS  Google Scholar 

  60. Bagri A, Gurney T, He X, et al. (2002) The chemokine SDF1 regulates migration of dentate granule cells. Development 129: 4249–4260

    PubMed  CAS  Google Scholar 

  61. Ma Q, Jones D and Springer TA (1999) The chemokine receptor CXCR4 is required for the retention of B lineage and granulocytic precursors within the bone marrow microenvironment. Immunity 10: 463–471

    Article  PubMed  CAS  Google Scholar 

  62. Nagasawa T, Hirota S, Tachibana K, et al. (1996) Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 382: 635–638

    Article  PubMed  CAS  Google Scholar 

  63. Kucia M, Ratajczak J and Ratajczak MZ (2005) Bone marrow as a source of circulating CXCR4+ tissue-committed stem cells. Biology of the cell/under the auspices of the European Cell Biology Organization 97: 133–146

    Google Scholar 

  64. Liles WC, Broxmeyer HE, Rodger E, et al. (2003) Mobilization of hematopoietic progenitor cells in healthy volunteers by AMD3100, a CXCR4 antagonist. Blood 102: 2728–2730

    Article  PubMed  CAS  Google Scholar 

  65. Petit I, Szyper-Kravitz M, Nagler A, et al. (2002) G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol 3: 687–694

    Article  PubMed  CAS  Google Scholar 

  66. Devine SM, Flomenberg N, Vesole DH, et al. (2004) Rapid mobilization of CD34+ cells following administration of the CXCR4 antagonist AMD3100 to patients with multiple myeloma and non-Hodgkin’s lymphoma. J Clin Oncol 22: 1095–1102

    Article  PubMed  CAS  Google Scholar 

  67. Helbig G, Christopherson KW, 2nd, Bhat-Nakshatri P, et al. (2003) NF-kappaB promotes breast cancer cell migration and metastasis by inducing the expression of the chemokine receptor CXCR4. J Biol Chem 278: 21631–21638

    Article  PubMed  CAS  Google Scholar 

  68. Schioppa T, Uranchimeg B, Saccani A, et al. (2003) Regulation of the chemokine receptor CXCR4 by hypoxia. J Exp Med 198: 1391–1402

    Article  PubMed  CAS  Google Scholar 

  69. Franitza S, Kollet O, Brill A, et al. (2002) TGF-beta1 enhances SDF-1alpha-induced chemotaxis and homing of naive T cells by up-regulating CXCR4 expression and downstream cytoskeletal effector molecules. Eur J Immunol 32: 193–202

    Article  PubMed  CAS  Google Scholar 

  70. Bachelder RE, Wendt MA and Mercurio AM (2002) Vascular endothelial growth factor promotes breast carcinoma invasion in an autocrine manner by regulating the chemokine receptor CXCR4. Cancer Res 62: 7203–7206

    PubMed  CAS  Google Scholar 

  71. Yonezawa A, Morita R, Takaori-Kondo A, et al. (2003) Natural alpha interferon-producing cells respond to human immunodeficiency virus type 1 with alpha interferon production and maturation into dendritic cells. J Virol 77: 3777–3784

    Article  PubMed  CAS  Google Scholar 

  72. Iikura M, Miyamasu M, Yamaguchi M, et al. (2001) Chemokine receptors in human basophils: inducible expression of functional CXCR4. J Leukoc Biol 70: 113–120

    PubMed  CAS  Google Scholar 

  73. Jourdan P, Vendrell JP, Huguet MF, et al. (2000) Cytokines and cell surface molecules independently induce CXCR4 expression on CD4+ CCR7+ human memory T cells. J Immunol 165: 716–724

    PubMed  CAS  Google Scholar 

  74. Wysoczynski M, Reca R, Ratajczak J, et al. (2005) Incorporation of CXCR4 into membrane lipid rafts primes homing-related responses of hematopoietic stem/progenitor cells to an SDF-1 gradient. Blood 105: 40–48

    Google Scholar 

  75. Chan KK, Oza AM and Siu LL (2003) The statins as anticancer agents. Clin Cancer Res 9: 10–19

    PubMed  CAS  Google Scholar 

  76. Schmidmaier R, Baumann P, Simsek M, et al. (2004) The HMG-CoA reductase inhibitor simvastatin overcomes cell adhesion-mediated drug resistance in multiple myeloma by geranylgeranylation of Rho protein and activation of Rho kinase. Blood 104: 1825–1832

    Article  PubMed  CAS  Google Scholar 

  77. Christopherson KW, 2nd, Hangoc G, Mantel CR, et al. (2004) Modulation of hematopoietic stem cell homing and engraftment by CD26. Science 305: 1000–1003

    Article  PubMed  CAS  Google Scholar 

  78. Janowska-Wieczorek A, Marquez LA, Dobrowsky A, et al. (2000) Differential MMP and TIMP production by human marrow and peripheral blood CD34(+) cells in response to chemokines. Exp Hematol 28: 1274–1285

    Article  PubMed  CAS  Google Scholar 

  79. Kijowski J, Baj-Krzyworzeka M, Majka M, et al. (2001) The SDF-1-CXCR4 axis stimulates VEGF secretion and activates integrins but does not affect proliferation and survival in lymphohematopoietic cells. Stem Cells 19: 453–466

    Article  PubMed  CAS  Google Scholar 

  80. Kucia M, Jankowski K, Reca R, et al. (2004) CXCR4-SDF-1 signalling, locomotion, chemotaxis and adhesion. J Mol Histol 35: 233–245

    Article  PubMed  CAS  Google Scholar 

  81. Peled A, Kollet O, Ponomaryov T, et al. (2000) The chemokine SDF-1 activates the integrins LFA-1, VLA-4, and VLA-5 on immature human CD34(+) cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood 95: 3289–3296

    PubMed  CAS  Google Scholar 

  82. Libura J, Drukala J, Majka M, et al. (2002) CXCR4-SDF-1 signaling is active in rhabdomyosarcoma cells and regulates locomotion, chemotaxis, and adhesion. Blood 100: 2597–2606

    Article  PubMed  CAS  Google Scholar 

  83. Dontu G, Al-Hajj M, Abdallah WM, et al. (2003) Stem cells in normal breast development and breast cancer. Cell Prolif 36 (Suppl 1): 59–72

    Article  PubMed  CAS  Google Scholar 

  84. Geminder H, Sagi-Assif O, Goldberg L, et al. (2001) A possible role for CXCR4 and its ligand, the CXC chemokine stromal cell-derived factor-1, in the development of bone marrow metastases in neuroblastoma. J Immunol 167: 4747–4757

    PubMed  CAS  Google Scholar 

  85. Hall JM and Korach KS (2003) Stromal cell-derived factor 1, a novel target of estrogen receptor action, mediates the mitogenic effects of estradiol in ovarian and breast cancer cells. Mol Endocrinol 17: 792–803

    Article  PubMed  CAS  Google Scholar 

  86. Jankowski K, Kucia M, Wysoczynski M, et al. (2003) Both hepatocyte growth factor (HGF) and stromal-derived factor-1 regulate the metastatic behavior of human rhabdomyosarcoma cells, but only HGF enhances their resistance to radiochemotherapy. Cancer Res 63: 7926–7935

    PubMed  CAS  Google Scholar 

  87. Muller A, Homey B, Soto H, et al. (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410: 50–56

    Article  PubMed  CAS  Google Scholar 

  88. Porcile C, Bajetto A, Barbero S, et al. (2004) CXCR4 activation induces epidermal growth factor receptor transactivation in an ovarian cancer cell line. Ann NY Acad Sci 1030: 162–169

    Article  PubMed  CAS  Google Scholar 

  89. Sun YX, Wang J, Shelburne CE, et al. (2003) Expression of CXCR4 and CXCL12 (SDF-1) in human prostate cancers (PCa) in vivo. J Cell Biochem 89: 462–473

    Article  PubMed  CAS  Google Scholar 

  90. Kollet O, Shivtiel S, Chen YQ, et al. (2003) HGF, SDF-1, and MMP-9 are involved in stress-induced human CD34+ stem cell recruitment to the liver. J Clin Invest 112: 160–169

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Marie Houghton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Li, H., Stoicov, C., Fan, X., Cerny, J., Houghton, J.M. (2009). The Chronically Inflamed Microenvironment and Cancer Stem Cells. In: Dittmar, T., Zanker, K. (eds) Stem Cell Biology in Health and Disease. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3040-5_11

Download citation

Publish with us

Policies and ethics