Stem Cell Niche Versus Cancer Stem Cell Niche – Differences and Similarities

  • Bruce C. BaguleyEmail author
  • Graeme J. Finlay


The organization of normal tissues and organs is thought to be based on stem cells, which are present as a small proportion of the total tissue. Stem cells in turn absolutely require supporting structures to maintain their self-renewal properties and such structures are termed niches. A large amount of evidence now supports the concept that tumors are also maintained by tumor stem cells, and by implication such cells will be contained within tumor stem cell niches. In this review we explore the hypothesis that the transition of the normal niche to the tumor niche occurs over a significant period of time and that different intermediate stages, termed here the “inflammatory niche” and the “immunological niche”, can be discerned. The inflammatory niche provides a chronic stress stimulus which causes an increased rate of stem cell proliferation while the immunological niche provides mechanisms to inhibit the proliferation of potential tumor cells that have formed in the inflammatory niche. The tumor cell niche therefore represents the ultimate breakdown of such proliferation control.


Stem cell Niche Chronic inflammation Tumor fibroblasts Lymphocytes Macrophages Cell cycle arrest Tumor dormancy TGF-β Interferon-γ 


  1. 1.
    Bendall SC, Stewart MH, Menendez P et al. (2007) IGF and FGF cooperatively establish the regulatory stem cell niche of pluripotent human cells in vitro. Nature 448:1015–1021.PubMedCrossRefGoogle Scholar
  2. 2.
    Meads MB, Hazlehurst LA, Dalton WS (2008) The bone marrow microenvironment as a tumor sanctuary and contributor to drug resistance. Clin Cancer Res 14:2519–2526.PubMedCrossRefGoogle Scholar
  3. 3.
    Moore KA, Lemischka IR (2006) Stem cells and their niches. Science 311:1880–1885.PubMedCrossRefGoogle Scholar
  4. 4.
    Orford KW, Scadden DT (2008) Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nat Rev Genet 9:115–128.PubMedCrossRefGoogle Scholar
  5. 5.
    Akala OO, Park IK, Qian D et al. (2008) Long-term haematopoietic reconstitution by Trp53-/-p16Ink4a-/-p19Arf-/- multipotent progenitors. Nature 453:228–232.PubMedCrossRefGoogle Scholar
  6. 6.
    Tothova Z, Gilliland DG (2007) FoxO transcription factors and stem cell homeostasis: insights from the hematopoietic system. Cell Stem Cell 1:140–152.PubMedCrossRefGoogle Scholar
  7. 7.
    Bouchard C, Lee S, Paulus-Hock V et al. (2007) FoxO transcription factors suppress Myc-driven lymphomagenesis via direct activation of Arf. Genes Dev 21:2775–2787.PubMedCrossRefGoogle Scholar
  8. 8.
    Katayama K, Nakamura A, Sugimoto Y et al. (2008) FOXO transcription factor-dependent p15(INK4b) and p19(INK4d) expression. Oncogene 27:1677–1686.PubMedCrossRefGoogle Scholar
  9. 9.
    Arden KC (2007) FoxOs in tumor suppression and stem cell maintenance. Cell 128:235–237.PubMedCrossRefGoogle Scholar
  10. 10.
    Yilmaz OH, Valdez R, Theisen BK et al. (2006) Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 441:475–482.PubMedCrossRefGoogle Scholar
  11. 11.
    Ying QL, Wray J, Nichols J et al. (2008) The ground state of embryonic stem cell self-renewal. Nature 453:519–523.PubMedCrossRefGoogle Scholar
  12. 12.
    Korinek V, Barker N, Moerer P et al. (1998) Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat Genet 19:379–383.PubMedCrossRefGoogle Scholar
  13. 13.
    Lessard J, Sauvageau G (2003) Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 423:255–260.PubMedCrossRefGoogle Scholar
  14. 14.
    Grinstein E, Wernet P (2007) Cellular signaling in normal and cancerous stem cells. Cell Signal 19:2428–2433.PubMedCrossRefGoogle Scholar
  15. 15.
    Duan Z, Horwitz M (2005) Gfi-1 takes center stage in hematopoietic stem cells. Trends Mol Med 11:49–52.PubMedCrossRefGoogle Scholar
  16. 16.
    Lee JY, Jang KS, Shin DH et al. (2008) Mel-18 negatively regulates INK4a/ARF-independent cell cycle progression via Akt inactivation in breast cancer. Cancer Res 68:4201–4209.PubMedCrossRefGoogle Scholar
  17. 17.
    Fuentealba LC, Eivers E, Geissert D et al. (2008) Asymmetric mitosis: Unequal segregation of proteins destined for degradation. Proc Natl Acad Sci USA 105:7732–7737.PubMedCrossRefGoogle Scholar
  18. 18.
    Schafer M, Werner S (2008) Cancer as an overhealing wound: an old hypothesis revisited. Nat Rev Mol Cell Biol 9:628–638.PubMedCrossRefGoogle Scholar
  19. 19.
    Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867.PubMedCrossRefGoogle Scholar
  20. 20.
    Balkwill F (2004) Cancer and the chemokine network. Nat Rev Cancer 4:540–550.PubMedCrossRefGoogle Scholar
  21. 21.
    Hagemann T, Balkwill F, Lawrence T (2007) Inflammation and cancer: a double-edged sword. Cancer Cell 12:300–301.PubMedCrossRefGoogle Scholar
  22. 22.
    Lee JM, Yanagawa J, Peebles KA et al. (2008) Inflammation in lung carcinogenesis: new targets for lung cancer chemoprevention and treatment. Crit Rev Oncol Hematol 66:208–217.PubMedCrossRefGoogle Scholar
  23. 23.
    Morel AP, Lievre M, Thomas C et al. (2008) Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS ONE 3:e2888.PubMedCrossRefGoogle Scholar
  24. 24.
    Dumont N, Wilson MB, Crawford YG et al. (2008) Sustained induction of epithelial to mesenchymal transition activates DNA methylation of genes silenced in basal-like breast cancers. Proc Natl Acad Sci USA 105:14867–14872.PubMedCrossRefGoogle Scholar
  25. 25.
    Congdon KL, Voermans C, Ferguson EC et al. (2008) Activation of Wnt signaling in hematopoietic regeneration. Stem Cells 26:1202–1210.PubMedCrossRefGoogle Scholar
  26. 26.
    Gebhardt C, Riehl A, Durchdewald M et al. (2008) RAGE signaling sustains inflammation and promotes tumor development. J Exp Med 205:275–285.PubMedCrossRefGoogle Scholar
  27. 27.
    Wang D, DuBois RN (2008) Pro-inflammatory prostaglandins and progression of colorectal cancer. Cancer Lett 267:197–203.PubMedCrossRefGoogle Scholar
  28. 28.
    Howe LR (2007) Inflammation and breast cancer. Cyclooxygenase/prostaglandin signaling and breast cancer. Breast Cancer Res 9:210.PubMedCrossRefGoogle Scholar
  29. 29.
    De Marzo AM, Platz EA, Sutcliffe S et al. (2007) Inflammation in prostate carcinogenesis. Nat Rev Cancer 7:256–269.PubMedCrossRefGoogle Scholar
  30. 30.
    Schedin P (2006) Pregnancy-associated breast cancer and metastasis. Nat Rev Cancer 6:281–291.PubMedCrossRefGoogle Scholar
  31. 31.
    Houghton J, Wang TC (2005) Helicobacter pylori and gastric cancer: a new paradigm for inflammation-associated epithelial cancers. Gastroenterology 128:1567–1578.PubMedCrossRefGoogle Scholar
  32. 32.
    Takaishi S, Okumura T, Wang TC (2008) Gastric cancer stem cells. J Clin Oncol 26:2876–2882.PubMedCrossRefGoogle Scholar
  33. 33.
    Ruiter DJ, Bhan AK, Harrist TJ et al. (1982) Major histocompatibility antigens and mononuclear inflammatory infiltrate in benign nevomelanocytic proliferations and malignant melanoma. J Immunol 129:2808–2815.PubMedGoogle Scholar
  34. 34.
    Hart PH, Grimbaldeston MA, Finlay-Jones JJ (2001) Sunlight, immunosuppression and skin cancer: role of histamine and mast cells. Clin Exp Pharmacol Physiol 28:1–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Wilgus TA, Koki AT, Zweifel BS et al. (2003) Inhibition of cutaneous ultraviolet light B-mediated inflammation and tumor formation with topical celecoxib treatment. Mol Carcinog 38:49–58.PubMedCrossRefGoogle Scholar
  36. 36.
    Kripke ML (1988) Immunoregulation of carcinogenesis: Past, present, and future. J Natl Cancer Inst 80:722–727.PubMedCrossRefGoogle Scholar
  37. 37.
    Hutchin ME, Kariapper MS, Grachtchouk M et al. (2005) Sustained Hedgehog signaling is required for basal cell carcinoma proliferation and survival: conditional skin tumorigenesis recapitulates the hair growth cycle. Genes Dev 19:214–223.PubMedCrossRefGoogle Scholar
  38. 38.
    Ding L, Getz G, Wheeler DA et al. (2008) Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455:1069–1075.PubMedCrossRefGoogle Scholar
  39. 39.
    MacKie RM, Reid R, Junor B et al. (2003) Fatal melanoma transferred in a donated kidney 16 years after melanoma surgery. N Engl J Med 348:567–568.PubMedCrossRefGoogle Scholar
  40. 40.
    Aguirre-Ghiso JA (2007) Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 7:834–846.PubMedCrossRefGoogle Scholar
  41. 41.
    Koebel CM, Vermi W, Swann JB et al. (2007) Adaptive immunity maintains occult cancer in an equilibrium state. Nature 450:903–907.PubMedCrossRefGoogle Scholar
  42. 42.
    Muller-Hermelink N, Braumuller H, Pichler B et al. (2008) TNFR1 signaling and IFN-gamma signaling determine whether T cells induce tumor dormancy or promote multistage carcinogenesis. Cancer Cell 13:507–518.PubMedCrossRefGoogle Scholar
  43. 43.
    Kortylewski M, Komyod W, Kauffmann ME et al. (2004) Interferon-gamma-mediated growth regulation of melanoma cells: Involvement of STAT1-dependent and STAT1-independent signals. J Invest Dermatol 122:414–422.PubMedCrossRefGoogle Scholar
  44. 44.
    Schewe DM, Aguirre-Ghiso JA (2008) ATF6à-Rheb-mTOR signaling promotes survival of dormant tumor cells in vivo. Proc Natl Acad Sci USA 105:10519–10524.PubMedCrossRefGoogle Scholar
  45. 45.
    Duff MD, Mestre J, Maddali S et al. (2007) Analysis of gene expression in the tumor-associated macrophage. J Surg Res 142:119–128.PubMedCrossRefGoogle Scholar
  46. 46.
    Kuilman T, Michaloglou C, Vredeveld LC et al. (2008) Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 133:1019–1031.PubMedCrossRefGoogle Scholar
  47. 47.
    Acosta JC, O‘Loghlen A, Banito A et al. (2008) Control of senescence by CXCR2 and its ligands. Cell Cycle 7:2956–2959.PubMedCrossRefGoogle Scholar
  48. 48.
    Baguley BC (2006) Tumor stem cell niches: a new functional framework for the action of anticancer drugs. Recent Pat Anti-Cancer Drug Discovery 1:121–127.CrossRefGoogle Scholar
  49. 49.
    Fonseca C, Dranoff G (2008) Capitalizing on the immunogenicity of dying tumor cells. Clin Cancer Res 14:1603–1608.PubMedCrossRefGoogle Scholar
  50. 50.
    Weinberg RA (2008) Twisted epithelial-mesenchymal transition blocks senescence. Nat Cell Biol 10:1021–1023.PubMedCrossRefGoogle Scholar
  51. 51.
    Pollard JW (2004) Tumor-educated macrophages promote tumor progression and metastasis. Nat Rev Cancer 4:71–78.PubMedCrossRefGoogle Scholar
  52. 52.
    Kramer A, Lukas J, Bartek J (2004) Checking out the centrosome. Cell Cycle 3:1390–1393.PubMedCrossRefGoogle Scholar
  53. 53.
    McDermott KM, Zhang J, Holst CR et al. (2006) p16(INK4a) prevents centrosome dysfunction and genomic instability in primary cells. PLoS Biol 4:e51.PubMedCrossRefGoogle Scholar
  54. 54.
    Rajagopalan H, Lengauer C (2004) Aneuploidy and cancer. Nature 432:338–341.PubMedCrossRefGoogle Scholar
  55. 55.
    Kunz M (2008) Genomic signatures for individualized treatment of malignant tumors. Curr Drug Discov Technol 5:9–14.PubMedCrossRefGoogle Scholar
  56. 56.
    Hendrix MJ, Seftor EA, Hess AR et al. (2003) Vasculogenic mimicry and tumor-cell plasticity: lessons from melanoma. Nat Rev Cancer 3:411–421.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Auckland Cancer Society Research CentreThe University of AucklandAucklandNew Zealand

Personalised recommendations