Skip to main content

Design of Catalysts for Asymmetric Organic Reactions Through Density Functional Calculations

  • Chapter
  • First Online:
Kinetics and Dynamics

Abstract

The current decade being a golden era in the history of organocatalysis, designing new organocatalysts for synthetically valuable reactions is of high importance. A fine blend of theoretical techniques and knowledge gathered from the experimental observations can help one design highly selective organocatalysts. The present chapter summarizes our efforts in designing organocatalysts for two synthetically important reactions; namely, the aldol reaction and sulfur ylide mediated ring formation reactions. In order to identify the crucial elements that affect the stereoselection process, detailed mechanistic studies are performed initially. Thus, factors controlling the vital energy differences between the diastereomeric transition states are identified and rationalized. Later on, insights from these model studies are utilized toward designing the new catalyst framework. In the last stage, the catalytic efficiency with the designed catalysts is evaluated for selected reactions. Conformationally constrained catalysts designed in this manner are predicted to be more effective with improved selectivities in comparison to the experimentally employed analogues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. (a) Hoffmann R, Alder RW, Wilcox CF Jr. (1970) J Am Chem Soc 92 (16): 4992–4993 (b) Schleyer P v R. Boldyrev AI (1991) J Chem Soc, Chem Commun 1536–1538 (c) Boldyrev AI, Schleyer P v R (1991) J Am Chem Soc 113 (24):9045–9054

    Google Scholar 

  2. Young KJH, Oxgaard J, Ess DH, Meier SK, Stewart T, Goddard WA III, Periana RA (2009) Chem Commun 3270

    Google Scholar 

  3. Houk KN, Cheong PH-Y (2008) Nature 455:309–313

    Article  CAS  Google Scholar 

  4. Grzybowski BA, Ishchenko AV, Shimada J, Shakhnovich EI (2002) Acc Chem Res 35(5):261–269

    Article  CAS  Google Scholar 

  5. Kitchen DB, Decornez H, Furr JR, Bajorath J (2004) Nat Rev Drug Discov 3(11):313–317

    Article  Google Scholar 

  6. Dalko PI, Moisan L (2004) Angew Chem Int Ed 43(39):5138–5175

    Article  CAS  Google Scholar 

  7. List B, Yang JW (2006) Science 313:1584–1586

    Article  CAS  Google Scholar 

  8. RMde F, Christmann M (2007) Eur J Org Chem 16:2575–2600

    Google Scholar 

  9. Carpenter J, Northrup AB, Chung D, Wiener JJM, Kim S-G, Macmillan DWC (2008) Angew Chem Int Ed 47(19):3568–3572

    Article  CAS  Google Scholar 

  10. Enders D, Grondal C, Hüttl MRM (2007) Angew Chem Int Ed 46(10):1570–1581

    Article  CAS  Google Scholar 

  11. Dondoni A, Massi A (2008) Angew Chem Int Ed 47(25):4638–4660

    Article  CAS  Google Scholar 

  12. List B (2002) Tetrahedron 58(28):5573–5590

    Article  CAS  Google Scholar 

  13. Tang Z, Jiang F, Yu L-T, Cui X, Gong L-Z, Mi A-Q, Jiang Y-Z, Wu Y-D (2003) J Am Chem Soc 125(18):5262–5263

    Article  CAS  Google Scholar 

  14. Cheong PH-Y, Houk KN (2004) J Am Chem Soc 126(43):13912–13913

    Article  CAS  Google Scholar 

  15. Mitsumori S, Zhang H, Cheong PH-Y, Houk KN, Tanaka F, Barbas CF III (2006) J Am Chem Soc 128(4):1040–1041

    Article  CAS  Google Scholar 

  16. (a) Vignola N, List B (2004) J Am Chem Soc 126(2):450–451 (b) Fu A, List B, Thiel W (2006) J Org Chem 71(1):320–326

    Google Scholar 

  17. Balcells D, Maseras F (2007) New J Chem 3:333–343

    Article  Google Scholar 

  18. Brown JM, Deeth RJ (2009) Angew Chem Int Ed 48(25):4476–4479

    Article  CAS  Google Scholar 

  19. List B, Lerner RA, Barbas CF III (2000) J Am Chem Soc 122(10):2395–2396

    Article  CAS  Google Scholar 

  20. Bahmanyar S, Houk KN, Martin HJ, List B (2003) J Am Chem Soc 125(9):2475–2479

    Article  CAS  Google Scholar 

  21. Zotova N, Broadbelt LJ, Armstrong A, Blackmond DG (2009) Bioorg Med Chem Lett 19(14):3934–3937

    Article  CAS  Google Scholar 

  22. Guillena G, Nájera C, Ramón DJ (2007) Tetrahedron Asymmetr 18(19):2249–2293

    Article  CAS  Google Scholar 

  23. Hayashi Y, Sumiya T, Takahashi J, Gotoh H, Urushima T, Shoji M (2006) Angew Chem Int Ed 45(6):958–961

    Article  CAS  Google Scholar 

  24. Cheong PH-Y, Houk KN, Warrier JS, Hanessian S (2004) Adv Synth Catal 346(9–10):1111–1115

    Article  CAS  Google Scholar 

  25. Bahmanyar S, Houk KN (2001) J Am Chem Soc 123(51):12911–12912

    Article  CAS  Google Scholar 

  26. Sakthivel K, Notz W, Bui T, Barbas CF III (2001) J Am Chem Soc 123(22):5260–5267

    Article  CAS  Google Scholar 

  27. Bassan A, Zou W, Reyes E, Himo F, Córdova A (2005) Angew Chem Int Ed 44(43):7028–7032

    Article  CAS  Google Scholar 

  28. Czinki E, Császár AG (2003) Chem – Eur J 9(4):1008–1019

    Article  CAS  Google Scholar 

  29. Wittkopp A, Schreiner PR (2003) Chem – Eur J 9(2):407–414

    Article  CAS  Google Scholar 

  30. (a) Cheong PH-Y, Houk KN (2004) J Am Chem Soc 126(43):13912–1313 (b) Bahmanyar S, Houk KN (2003) Org Lett 5(8):1249–1251 (c) Fu A, List B, Thiel W (2006) J Org Chem 71(1):320–326

    Google Scholar 

  31. Shinisha CB, Sunoj RB (2007) Org Biomol Chem 5:1287–1294

    Article  CAS  Google Scholar 

  32. Hoffmann R, Schleyer P v R HF III (2008) Angew Chem Int Ed 47(38):7164–7167

    Article  Google Scholar 

  33. (a) Trost BM, Melvin LS Jr. (1975) Sulfur ylides –emerging synthetic intermediates. Academic, New York (b) Corey EJ, Chaykovsky M (1965) J Am Chem Soc 87(6):1353–1364 (c) Johnson CR, Schroeck CW (1973) J Am Chem Soc 95(22):7418–7423

    Google Scholar 

  34. (a) Hodgson DM, Gibbs AR, Lee GP (1996) Tetrahedron 52(46):14361–14384 (b) Taylor SK (2000) Tetrahedron 56(516):1149–1163

    Google Scholar 

  35. (a) Sweeney JB (2002) Chem Soc Rev 31:247–258 (b) Brackmann F, de Meijere A (2007) Chem Rev 107(11):4538–4583 and references therein

    Google Scholar 

  36. (a) Li A-H, Dai L-X, Aggarwal VK (1997) Chem Rev 97(6):2341–2372 (b) Blot V, Briere J-F, Davoust M, Miniere S, Reboul V, Metzner P (2005) Relat Elem 180:1171–1182 (c) McGarrigle EM, Myers EL, Illa O, Shaw MA, Riches SL, Aggarwal VK (2007) Chem Rev 107(12) 5814–5883

    Google Scholar 

  37. (a) Aggarwal VK, Alonso E, Fang G, Ferrara M, Hynd G, Porcelloni M (2001) Angew Chem Int Ed 40(8):1433–1436 (b) Aggarwal VK, Charmant JPH, Ciampi C, Hornby JM, O'Brien CJ, Hynd G, Parsons R (2001) J Chem Soc Perkin Trans 1:3159–3166

    Google Scholar 

  38. (a) Yang X-F, Zhang M-J, Hou X-L, Dai L-X (2002) J Org Chem 67(23):8097–8103 (b) Deng X-M, Cai P, Ye S, Sun X-L, Liao W-W, Li K, Tang Y, Wu Y-D, Dai L-X (2006) J Am Chem Soc 128(30):9730–9740

    Google Scholar 

  39. (a) Solladié-Cavallo A, Diep-Vohuule A, Sunjic V, Vinkovic V (1996) Tetrahedron: Asymmetry 7(6):1783–1788 (b) Solladié-Cavallo A, Diep-Vohuule A, Isarno T (1998) Angew Chem Int Ed 37(12):1689–1691

    Google Scholar 

  40. (a) Zanardi J, Lamazure D, Minière S, Reboul V, Metzner P (2002) J Org Chem 67(25):9083–9086 (b) Davoust M, Brière J-F, Jaffrès P-A, Metzner P (2005) J Org Chem 70(10):4166–4169

    Google Scholar 

  41. (a) Volatron F, Eisenstein O (1987) J Am Chem Soc 109(1):1–14 (b) Lindvall MK, Koskinen AMP (1999) J Org Chem 64(13):4596–4606

    Google Scholar 

  42. (a) Aggarwal VK, Harvey JN, Richardson J (2002) J Am Chem Soc 124(20):5747–5756 (b) Silva MA, Bellenie BR, Goodman JM (2004) Org Lett 6(15):2559–2562

    Google Scholar 

  43. Gaussian 03, Revision C.02, Frisch M J, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr., Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA, Gaussian, Inc., Wallingford CT, 2004.

    Google Scholar 

  44. (a) Becke AD (1993) J. Chem. Phys. 98:5648–5652 (b) Becke AD (1988) Phys Rev A 38:3098–3100 (c) Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Google Scholar 

  45. (a) Ditchfield R, Hehre WJ, Pople JA (1971) J Chem Phys 54(2):720–723 (b) Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257 (c) Hariharan PC, Pople JA (1973) Theor Chim Acta 28(3):213–222

    Google Scholar 

  46. (a) Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154 (b) Gonzalez C, Schlegel HB (1990) J Phys Chem 94(14):5523–5527

    Google Scholar 

  47. Scott AP, Radom L (1996) J Phys Chem 100(41):16502–16513

    Article  CAS  Google Scholar 

  48. Cossi M, Barone V, Cammi R, Tomasi J (1996) Chem Phys Lett 255(4–6):327–335

    Article  CAS  Google Scholar 

  49. (a) Gil AM, Bunuel E, Diaz-de-Villegas MD, Cativiela C (2003) Tetrahedron: Asymmetry 14(11):1479–1488 (b) Gil AM, Bunuel E, López P, Cativiela C (2004) Tetrahedron: Asymmetry 15(5):811–819

    Google Scholar 

  50. Gante J (1994) Angew Chem Int Ed 33(17):1699–1720

    Article  Google Scholar 

  51. Nelsen SF, Ippoliti JT, Frigo TB, Petillo PA (1989) J Am Chem Soc 111(5):1776–1781

    Article  CAS  Google Scholar 

  52. Alemán C, Jiménez AI, Cativiela C, Pérez JJ, Casanovas J (2005) J Phy Chem B 109(23):11836–11841

    Article  Google Scholar 

  53. Grygorenko OO, Artamonov OS, Palamarchuk GV, Zubatyuk RI, Shishkin OV, Komarov IV (2006) Tetrahedron Asymmetry 17(2):252–258

    Article  CAS  Google Scholar 

  54. Brandt P, Andersson PG (2000) Synlett 8:1092–1106

    Google Scholar 

  55. Jenkins CL, Lin G, Duo J, Rapolu D, Guzei IA, Raines RT, Krow GR (2004) J Org Chem 69(25):8565–8573

    Article  CAS  Google Scholar 

  56. Zhang H, Mifsud M, Tanaka F, Barbas CF III (2006) J Am Chem Soc 128(30):9630–9631

    Article  CAS  Google Scholar 

  57. Krow GR, Huang Q, Lin G, Centafont RA, Thomas AM, Gandla D, DeBrosse C, Carrol PJ (2006) J Org Chem 71(5):2090–2098

    Article  CAS  Google Scholar 

  58. Armstrong A, Bhonoah Y, White AJP (2009) J Org Chem 74(14):5041–5048

    Article  CAS  Google Scholar 

  59. Different substituents on the ylidic center were chosen according to their electron withdrawing capacities. Based on literature reports and proton affinity evaluation, the various ylides have been classified into stabilized, semistabilized and non-stabilized categories (see ref. [60] for details).

    Google Scholar 

  60. Janardanan D, Sunoj RB (2007) Chem – Eur J 13(17):4805–4815

    Article  CAS  Google Scholar 

  61. Janardanan D, Sunoj RB (2007) J Org Chem 72(2):331–341

    Article  CAS  Google Scholar 

  62. Janardanan D, Sunoj RB (2008) J Org Chem 73(21):8163–8174

    Article  CAS  Google Scholar 

  63. Aggarwal VK, Ferrara M, O’brien CJ, Thomson A, Jones RVH, Fieldhouse R (2001) J Chem Commun Perkin Trans 1(14):1635–1643

    Article  Google Scholar 

  64. Breau L, Durst T (1991) Tetrahedron Asymmetr 2(5):367–370

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Generous computing facilities from IITB computer centre and senior research scholarship from CSIR New Delhi (Shinisha C. B. and Deepa Janardanan) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Shinisha, C.B., Janardanan, D., Sunoj, R.B. (2010). Design of Catalysts for Asymmetric Organic Reactions Through Density Functional Calculations. In: Paneth, P., Dybala-Defratyka, A. (eds) Kinetics and Dynamics. Challenges and Advances in Computational Chemistry and Physics, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3034-4_4

Download citation

Publish with us

Policies and ethics