Skip to main content

From the Gas Phase to a Lipid Membrane Environment: DFT and MD Simulations of Structure and Dynamics of Hydrogen-Bonded Solvates of Bifunctional Heteroazaaromatic Compounds

  • Chapter
  • First Online:

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 12))

Abstract

We present a review of our recent developments in computational modeling of hydrogen-bonding-induced phenomena in a series of biologically relevant bifunctional proton donor–acceptor heteroazaaromatic compounds. Different types of hydrogen-bonded solvates, in which water or alcohol molecules form a bridge connecting the proton donor (pyrrole NH group) and the acceptor (pyridine or quinoline nitrogen) atoms of bifunctional solutes, are explored by combining density functional theory (DFT) and molecular dynamics (MD) simulation approaches. Structure and dynamics of multiple hydrogen-bonded solute-solvent complexes are studied starting from isolated complexes in the gas phase, elucidating their solvation dynamics in solutions and, finally, in a heterogeneous environment of a lipid bilayer. Our results indicate that the structure, stoichiometry and hydrogen bond strength in such solvates are tuned by local topologies of the hydrogen-bonding sites of a bifunctional proton donor–acceptor molecule. A role of such solvates in hydrogen-bond-dependent photophysics and in controlling excited-state behavior of heteroazaaromatic compounds is discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Waluk J (2003) Acc Chem Res 36:832–838

    CAS  Google Scholar 

  2. Chou PT (2001) J Chin Chem Soc 48:651–682

    CAS  Google Scholar 

  3. Nosenko E, Wiosna-Sałyga G, Kunitski M, Petkova I, Singh A, Buma WJ, Thummel RP, Brutschy B, Waluk J (2008) Angew Chem Int Ed Engl 47:6037–6040

    CAS  Google Scholar 

  4. Kijak M, Nosenko E, Singh A, Thummel RP, Waluk J (2007) J Am Chem Soc 129:2738–2739

    CAS  Google Scholar 

  5. Wiosna-Sałyga G, Dobkowski J, Mudadu MS, Sazanovich I, Thummel RP, Waluk J (2006) Chem Phys Lett 423:288–292

    Google Scholar 

  6. Kijak M, Zielińska A, Chamchoumis C, Herbich J, Thummel RP, Waluk J (2004) Chem Phys Lett 400:279–285

    CAS  Google Scholar 

  7. Wiosna G, Petkova I, Mudadu MS, Thummel RP, Waluk J (2004) Chem Phys Lett 400:379–383

    CAS  Google Scholar 

  8. Herbich J, Dobkowski J, Thummel RP, Henge V, Waluk J (1997) J Phys Chem A 101:5839–5845

    CAS  Google Scholar 

  9. Kyrychenko A, Herbich J, Izydorzak M, Gil M, Dobkowski J, Wu FY, Thummel RP, Waluk J (1999) Isr J Chem 39:309–318

    CAS  Google Scholar 

  10. del Valle JC, Dominguez E, Kasha M (1999) J Phys Chem A 103:2467–2475

    Google Scholar 

  11. Marks D, Zhang H, Borowicz P, Waluk J, Glasbeek M (2000) J Phys Chem A 104:7167–7175

    CAS  Google Scholar 

  12. Kijak M, Zielińska A, Thummel RP, Herbich J, Waluk J (2002) Chem Phys Lett 366:329–335

    CAS  Google Scholar 

  13. Herbich J, Kijak M, Luboradzki R, Gil M, Zielińska A, Hu YZ, Thummel RP, Waluk J (2002) J Photochem Photobiol: A Chem 154:61–68

    CAS  Google Scholar 

  14. Taylor CL, El-Bayoumi MA, Kasha M (1969) Proc Natl Acad Sci USA 63:253–260

    CAS  Google Scholar 

  15. Douhal A, Kim SK, Zewail AH (1995) Nature 378:260–263

    CAS  Google Scholar 

  16. Folmer DE, Poth L, Wisniewski ES, Castleman AW Jr (1998) Chem Phys Lett 278:1–7

    Google Scholar 

  17. Takeuchi S, Tahara T (1998) J Phys Chem A 102:7740–7753

    CAS  Google Scholar 

  18. Takeuchi S, Tahara T (2001) Chem Phys Lett 347:108–114

    CAS  Google Scholar 

  19. Fiebig T, Chachisvilis M, Manger M, Zewail AH, Douhal A, Garcia-Ochoa I, de La Hoz AA (1999) J Phys Chem A 103:7419–7431

    CAS  Google Scholar 

  20. Folmer DE, Wisniewski ES, Castleman AW Jr (2000) Chem Phys Lett 318:637–643

    CAS  Google Scholar 

  21. Catalán J, del Valle JC, Kasha M (1999) Proc Natl Acad Sci USA 96:8338–8343

    Google Scholar 

  22. Catalán J, Pérez P, del Valle JC, de Paz JLG, Kasha M (2002) Proc Natl Acad Sci USA 99:5793–5798

    Google Scholar 

  23. Takeuchi S, Tahara T (2007) Proc Natl Acad Sci USA 104:5285–5290

    CAS  Google Scholar 

  24. Kwon OH, Zewail AH (2007) Proc Natl Acad Sci USA 104:8703–8708

    CAS  Google Scholar 

  25. Catalán J (2008) Proc Natl Acad Sci USA 105:E78

    Google Scholar 

  26. Kwon OH, Zewail AH (2008) Proc Natl Acad Sci USA 105:E79

    CAS  Google Scholar 

  27. Sekiya H, Sakota K (2008) J Photochem Photobiol: C Photochem Rev 9:81–91

    CAS  Google Scholar 

  28. Fang WH (1998) J Am Chem Soc 316:7568–7576

    Google Scholar 

  29. Kohtani S, Tagami A, Nakagaki R (2000) Chem Phys Lett 316:88–93

    CAS  Google Scholar 

  30. Matsumoto Y, Ebata T, Mikami N (2002) J Phys Chem A 106:5591–5599

    CAS  Google Scholar 

  31. Meuwly M, Bach A, Leutwyler S (2001) J Am Chem Soc 123:11446–11453

    CAS  Google Scholar 

  32. Coussan S, Meuwly M, Leutwyler S (2001) J Chem Phys 114:3524–3534

    CAS  Google Scholar 

  33. Tanner C, Manca C, Leutwyler S (2003) Science 302:1736–1739

    CAS  Google Scholar 

  34. Bach A, Tanner C, Manca C, Frey HM, Leutwyler S (2003) J Chem Phys 119:5933–5942

    CAS  Google Scholar 

  35. Manca C, Tanner C, Coussan S, Bach A, Leutwyler S (2004) J Chem Phys 121:2578–2590

    CAS  Google Scholar 

  36. Tanner C, Manca C, Leutwyler S (2005) J Chem Phys 122:204326/1–204326/11

    CAS  Google Scholar 

  37. Fernández-Ramos A, Martïnez-Núñez E, Vázquez SA, Ríos MA, Estévez CM, Merchán M, Serrano-Andrés L (2007) J Phys Chem A 111:5907–5912

    Google Scholar 

  38. Mehata MS (2007) Chem Phys Lett 436:357–361

    CAS  Google Scholar 

  39. Mehata MS (2008) J Phys Chem B 112:8383–8386

    CAS  Google Scholar 

  40. Zimmer M (2002) Chem Rev 102:759–781

    CAS  Google Scholar 

  41. Vendrell O, Gelabert R, Moreno M, Lluch JM (2008) J Chem Theory Comp 4:1138–1150

    CAS  Google Scholar 

  42. Pakhomov AA, Martynov VI (2008) Chem Biol 15:755–764

    CAS  Google Scholar 

  43. Vendrell O, Gelabert R, Moreno M, Lluch JM (2008) J Phys Chem B 112:5500–5511

    CAS  Google Scholar 

  44. Vendrell O, Gelabert R, Moreno M, Lluch JM (2008) J Phys Chem B 112:13443–13452

    CAS  Google Scholar 

  45. Kandori H (2000) Biochim Biophys Acta 118:177–191

    Google Scholar 

  46. Sato Y, Hata M, Neya S, Hoshino T (2006) J Phys Chem B 110:22084–22812

    Google Scholar 

  47. Bondar AN, Baudry J, Suhai S, Fischer F, Smith JC (2008) J Phys Chem B 112:14729–14741

    CAS  Google Scholar 

  48. Serrano-Andrés L, Roos BO (1996) J Am Chem Soc 118:185–195

    Google Scholar 

  49. Sobolewski AL, Domcke W (1999) Chem Phys Lett 315:293–298

    CAS  Google Scholar 

  50. Kyrychenko A, Waluk J (2006) J Phys Chem A 110:11958–11967

    CAS  Google Scholar 

  51. Parac M, Grimme S (2002) J Phys Chem A 106:6844–6850

    CAS  Google Scholar 

  52. Hättig C, Köhn A (2002) J Chem Phys 117:6939–6951

    Google Scholar 

  53. Nosenko Y, Kunitski M, Riehn C, Thummel RP, Kyrychenko A, Herbich J, Waluk J, Brutschy B (2008) J Phys Chem A 112:1150–1156

    CAS  Google Scholar 

  54. Furche C, Ahlrichs R (2002) J Chem Phys 117:7433–7447

    CAS  Google Scholar 

  55. Kyrychenko A, Herbich J, Izydorzak M, Wu F, Thummel RP, Waluk J (1999) J Am Chem Soc 121:11179–11188

    CAS  Google Scholar 

  56. Kornyshev AA, Kuznetsov AM, Spohr E, Ulstrup J (2003) J Phys Chem B 107:3351–3366

    CAS  Google Scholar 

  57. Agmon N (2005) J Phys Chem A 109:13–35

    CAS  Google Scholar 

  58. Lapid H, Agmon N, Petersen MK, Voth GA (2005) J Chem Phys 122:014506/1–014506/11

    CAS  Google Scholar 

  59. Mezer A, Friedman R, Noivirt O, Nachliel E, Gutman M (2005) J Phys Chem A 109:11379–11378

    CAS  Google Scholar 

  60. Friedman R, Fischer S, Nachliel E, Scheiner S, Gutman M (2007) J Phys Chem B 111:6059–6070

    CAS  Google Scholar 

  61. Wang S, Smith SC (2006) J Phys Chem B 110:5084–5093

    CAS  Google Scholar 

  62. Sakota K, Komoto Y, Nakagaki M, Ishikawa W, Sekiya H (2007) Chem Phys Lett 435:1–4

    CAS  Google Scholar 

  63. Tanner C, Thut M, Steinlin A, Manca C, Leutwyler S (2006) J Phys Chem A 110:1758–1766

    CAS  Google Scholar 

  64. Agmon N (2007) J Phys Chem B 111:7870–7878

    CAS  Google Scholar 

  65. Mente S, Frankland CJV, Reynolds L, Maroncelli M (1998) Chem Phys Lett 293:515–522

    CAS  Google Scholar 

  66. Yokoyama H, Watanabe H, Omi T, Ishiuchi SI, Fujii M (2001) J Phys Chem A 105:9366–9374

    CAS  Google Scholar 

  67. Taketsugu T, Yagi K, Gordon MS (2005) Int J Quant Chem 104:758–772

    CAS  Google Scholar 

  68. Smedarchina Z, Siebrand W, Fernández-Ramos A, Gorb L, Leszczynski J (2000) J Chem Phys 112:566–573

    CAS  Google Scholar 

  69. Gordon MS (1996) J Phys Chem 100:3974–3979

    CAS  Google Scholar 

  70. Fernández-Ramos A, Smedarchina Z, Siebrand W, Zgierski MZ, Rios MA (1999) J Am Chem Soc 121:6280–6289

    Google Scholar 

  71. Shukla MK, Mishra PC (1998) Chem Phys 230:187–200

    CAS  Google Scholar 

  72. Casadesúus R, Moreno M, Lluch JM (2003) Chem Phys 290:319–336

    Google Scholar 

  73. Chaban GM, Gordon MS (1999) J Phys Chem A 103:185–189

    CAS  Google Scholar 

  74. Fernández-Ramos A, Smedarchina Z, Siebrand W, Zgierski MZ (2001) J Chem Phys 114:7518–7526

    Google Scholar 

  75. Svartsov YN, Schmitt M (2008) J Chem Phys 128:214310/1–214310/9

    CAS  Google Scholar 

  76. Vu TBC, Kalkman I, Meerts WL, Svartsov YN, Jacoby C, Schmitt M (2008) J Chem Phys 128:214311/1–214311/10

    CAS  Google Scholar 

  77. Koizumi Y, Jouvet C, Norihiro T, Ishiuchi SI, Dedonder-Lardeux C, Fujii M (2008) J Chem Phys 129:104311/1–104311/10

    CAS  Google Scholar 

  78. Sakota K, Kageura Y, Sekiya H (2008) J Chem Phys 129:054303/1–054303/10

    CAS  Google Scholar 

  79. Hu WP, You RM, Yen SY, Hung FT, Chou PH, Chou PT (2003) Chem Phys Lett 370:139–146

    CAS  Google Scholar 

  80. Hung FT, Hu WP, Chou PT (2001) J Phys Chem A 105:10475–10482

    CAS  Google Scholar 

  81. Chou PT, Wei CY, Chang CP, Meng-Shin K (1995) J Phys Chem 99:11994–12000

    CAS  Google Scholar 

  82. Herbich J, Hung CY, Thummel RP, Waluk J (1996) J Am Chem Soc 118:3508–3518

    CAS  Google Scholar 

  83. Kyrychenko A, Stepanenko Y, Waluk J (2000) J Phys Chem A 104:9542–9555

    CAS  Google Scholar 

  84. Nosenko Y, Kunitski M, Thummel RP, Kyrychenko A, Herbich J, Waluk J, Riehn C, Brutschy B (2006) J Am Chem Soc 128:10000–10001

    CAS  Google Scholar 

  85. Nosenko Y, Kyrychenko A, Thummel RP, Waluk J, Brutschy B, Herbich J (2007) Phys Chem Chem Phys 9:3276–3285

    CAS  Google Scholar 

  86. Weigend F, Häser M, Patzelt H, Ahlrichs R (1998) Chem Phys Lett 294:143–152

    CAS  Google Scholar 

  87. Schäfer A, Huber C, Ahlrichs R (1994) J Chem Phys 100:5829–5835

    Google Scholar 

  88. Manca C, Tanner C, Leutwyler S (2005) Int Rev Phys Chem 24:457–488

    CAS  Google Scholar 

  89. Mente S, Maroncelli M (1998) J Phys Chem A 102:3860–3876

    CAS  Google Scholar 

  90. Scott WRP, Hünenberger PH, Tironi IG, Mark AI, Billeter SR, Fennen J, Torda AE, Huber T, Krüger P, van Gunsteren WF (1999) J Phys Chem A 103:3596–3607

    CAS  Google Scholar 

  91. Sobolewski AL, Domcke W, Dedonder-Lardeux C, Jouvet C (2002) Phys Chem Chem Phys 4:1093–1100

    CAS  Google Scholar 

  92. Sobolewski AL, Domcke W (2007) J Phys Chem A 111:11725–11735

    CAS  Google Scholar 

  93. Rode MF, Sobolewski AL (2008) Chem Phys 347:413–421

    CAS  Google Scholar 

  94. Lan Z, Frutos LM, Sobolewski AL, Domcke W (2008) Proc Natl Acad Sci USA 105:12707–12712

    CAS  Google Scholar 

  95. Yau WM, Wimley WC, Gawrisch K, White SH (1998) Biochemistry 37:14713–14718

    CAS  Google Scholar 

  96. Grossfield A, Woolf TB (2002) Langmuir 18:198–210

    CAS  Google Scholar 

  97. Gaede HC, Yau WM, Gawrisch K (2005) J Phys Chem B 109:13014–13023

    CAS  Google Scholar 

  98. Smirnov AV, English DS, Rich RL, Lane J, Teyton L, Schwabacher AW, Luo S, Thornburg RW, Petrich JW (1997) J Phys Chem B 101:2758–2769

    CAS  Google Scholar 

  99. Kyrychenko A, Waluk J (2008) Biophys Chem 136:128–135

    CAS  Google Scholar 

  100. Tieleman DP, Berendsen HJC (1996) J Chem Phys 105:4871–4880

    CAS  Google Scholar 

  101. Tieleman DP, Marrink SJ, Berendsen HJC (1997) Biochim Biophys Acta 1331:235–270

    CAS  Google Scholar 

  102. Rodríguez-Prieto F, Mosquera M, Novo M (1990) J Phys Chem 94:8536–8542

    Google Scholar 

  103. Mukherjee TK, Ahuja P, Koner AL, Datta A (2005) J Phys Chem A 109:12567–12573

    CAS  Google Scholar 

  104. Mukherjee TK, Panda D, Datta A (2005) J Phys Chem A 109:18895–18901

    CAS  Google Scholar 

  105. Ulander J, Haymet ADJ (2003) Biophys J 85:3475–3484

    CAS  Google Scholar 

  106. Milhaud J (2004) Biochim Biophys Acta 1663:19–51

    CAS  Google Scholar 

  107. Berkowitz ML, Bostick BL, Pandit S (2006) Chem Rev 106:1527–1539

    CAS  Google Scholar 

  108. Kwon OH, Jang DJ (2005) J Phys Chem B 109:20479–20484

    CAS  Google Scholar 

  109. Kyrychenko A, Herbich J, Wu F, Thummel RP, Waluk J (2000) J Am Chem Soc 122:2818–2827

    CAS  Google Scholar 

  110. Kyrychenko A, Waluk J (2003) J Chem Phys 119:7318–7327

    CAS  Google Scholar 

  111. Kyrychenko A, Gorski A, Waluk J (2004) J Chem Phys 121:12017–12025

    CAS  Google Scholar 

  112. Kyrychenko A, Waluk J (2005) J Chem Phys 123:064706/1–064706/10

    CAS  Google Scholar 

  113. Kyrychenko A, Gawinkowski S, Urbańska N, Pietraszkiewicz M, Waluk J (2007) J Chem Phys 127:134501/1–134501/12

    Google Scholar 

Download references

Acknowledgements

JW acknowledges support by the grant N N204 3329 33 from the Polish Ministry of Science and Higher Education. The experiments referred to in this work were based on a long-time collaboration with the groups of Prof. R.P. Thummel (University of Houston) and Prof. B. Brutschy (University of Frankfurt).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacek Waluk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Kyrychenko, A., Waluk, J. (2010). From the Gas Phase to a Lipid Membrane Environment: DFT and MD Simulations of Structure and Dynamics of Hydrogen-Bonded Solvates of Bifunctional Heteroazaaromatic Compounds. In: Paneth, P., Dybala-Defratyka, A. (eds) Kinetics and Dynamics. Challenges and Advances in Computational Chemistry and Physics, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3034-4_2

Download citation

Publish with us

Policies and ethics