Skip to main content

Integrating Computational Methods with Experiment Uncovers the Role of Dynamics in Enzyme-Catalysed H-Tunnelling Reactions

  • Chapter
  • First Online:
Kinetics and Dynamics

Abstract

We review the role of dynamics in enzyme catalysed H-tunnelling reactions with particular focus on the integration of computational methods with experimental and numerical modelling studies. We show that H-tunnelling requires compressive motion along the H-transfer coordinate and these reactions can be modelled successfully using vibrationally-coupled H-tunnelling models in which barrier compression is driven by fast motions within the enzyme–substrate complex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lad C, Williams NH, Wolfenden R (2003) Proc Natl Acad Sci USA 100:5607

    Article  CAS  Google Scholar 

  2. Wolfenden R, Snider MJ (2001) Acc Chem Res 34:938

    Article  CAS  Google Scholar 

  3. Nagel ZD, Klinman JP (2006) Chem Rev 106:3095

    Article  CAS  Google Scholar 

  4. Schwartz SD, Schramm VL (2009) Nat Chem Biol 5:551

    Article  CAS  Google Scholar 

  5. Sutcliffe MJ, Scrutton NS (2006) Phys Chem Chem Phys 8:4510

    Article  CAS  Google Scholar 

  6. Careri G (1974) In: Mintz S, Widmayer SM (eds) Quantum Statistical Mechanics in the Natural Sciences. New York, Plenum

    Google Scholar 

  7. Karplus M, McCammon JA (1983) Annu Rev Biochem 52:263

    Article  CAS  Google Scholar 

  8. Cha Y, Murray CJ, Klinman JP (1989) Science 243:1325

    Article  CAS  Google Scholar 

  9. Bruno WJ, Bialek W (1992) Biophys J 63:689

    Article  CAS  Google Scholar 

  10. Antoniou D, Schwartz SD (1997) Proc Natl Acad Sci USA 94:12360

    Article  CAS  Google Scholar 

  11. Kohen A, Klinman JP (1999) Chem Biol 6:R191

    Article  CAS  Google Scholar 

  12. Sutcliffe MJ, Scrutton NS (2000) Phil Trans R Soc Ser A 358:367

    Article  CAS  Google Scholar 

  13. Sutcliffe MJ, Scrutton NS (2000) Trends Biochem Sci 25:405

    Article  CAS  Google Scholar 

  14. Ball P (2004) Nature 431:396

    Article  CAS  Google Scholar 

  15. Pu J, Gao J, Truhlar DG (2006) Chem Rev 106:3140

    Article  CAS  Google Scholar 

  16. Bell RP (1980) The tunnel effect in chemistry. Chapman & Hall, London

    Google Scholar 

  17. Grant KL, Klinman JP (1989) Biochemistry 28:6597

    Article  CAS  Google Scholar 

  18. Soudackov AV, Hatcher ER, Hammes-Schiffer S (2004) Effects of proton donor-acceptor vibrational motion on proton-coupled electron transfer in solution and proteins. Abstracts of Papers of the American Chemical Society 228, U254

    Google Scholar 

  19. Soudackov AV, Hammes-Schiffer S (2005) Dynamical effects of proton donor-acceptor mode and solvent in nonadiabatic proton-coupled electron transfer. Abstracts of Papers of the American Chemical Society 229, U767

    Google Scholar 

  20. Antoniou D, Schwartz SD (2001) J Phys Chem B 105:5553

    Article  CAS  Google Scholar 

  21. Kuznetsov AM, Ulstrup J (1999) Can J Chem 77:1085

    CAS  Google Scholar 

  22. Marcus RA, Sutin N (1985) Biochim Biophys Acta 811:265

    Article  CAS  Google Scholar 

  23. Knapp MJ, Rickert K, Klinman JP (2002) J Am Chem Soc 124:3865

    Article  CAS  Google Scholar 

  24. Knapp MJ, Klinman JP (2002) Eur J Biochem 269:3113

    Article  CAS  Google Scholar 

  25. Meyer MP, Klinman JP (2005) Chem Phys 319:283

    Article  CAS  Google Scholar 

  26. Johannissen LO, Hay S, Scrutton NS et al (2007) J Phys Chem B 111:2631

    Article  CAS  Google Scholar 

  27. Hay S, Sutcliffe MJ, Scrutton NS (2007) Proc Natl Acad Sci USA 104:507

    Article  CAS  Google Scholar 

  28. Hatcher E, Soudackov AV, Hammes-Schiffer S (2004) J Am Chem Soc 126:5763

    Article  CAS  Google Scholar 

  29. Hatcher E, Soudackov AV, Hammes-Schiffer S (2007) J Am Chem Soc 129:187

    Article  CAS  Google Scholar 

  30. Meyer MP, Tomchick DR, Klinman JP (2008) Proc Natl Acad Sci USA 105:1146

    Article  CAS  Google Scholar 

  31. Basran J, Harris RJ, Sutcliffe MJ et al (2003) J Biol Chem 278:43973

    Article  CAS  Google Scholar 

  32. Northrop DB (2002) Biochim Biophys Acta 1595:71

    Article  CAS  Google Scholar 

  33. Isaacs NS (1984) In: Buncel E, Lee CC (eds) Isotope effects in organic chemistry. Elsevier, London

    Google Scholar 

  34. Hay S, Pudney CR, McGrory TA et al (2009) Angew Chem Int Ed Engl 48:1452

    Article  CAS  Google Scholar 

  35. Pang J, Hay S, Scrutton NS et al (2008) J Am Chem Soc 130:7092

    Article  CAS  Google Scholar 

  36. Alhambra C, Corchado J, Snchez ML et al (2001) J Phys Chem B 105:11326

    Article  CAS  Google Scholar 

  37. Truhlar DG, Isaacson AD, Garret BC (1985) In: Baer M (ed) Theory of Chemical Reaction Dynamics. CRC Press, Boca Raton, FL

    Google Scholar 

  38. Gao J, Truhlar DG (2002) Annu Rev Phys Chem 53:467

    Article  CAS  Google Scholar 

  39. Truhlar DG, Gao JL, Garcia-Viloca M et al (2004) Int J Quant Chem 100:1136

    Article  CAS  Google Scholar 

  40. Fernandez-Ramos A, Ellingson BA, Garrett BC, Truhlar DG (2007) Rev Comput Chem 23:125

    Article  CAS  Google Scholar 

  41. Caratzoulas S, Schwartz SD (2001) J Chem Phys 114:2910

    Article  CAS  Google Scholar 

  42. Caratzoulas S, Mincer JS, Schwartz SD (2002) J Am Chem Soc 124:3270

    Article  CAS  Google Scholar 

  43. Bahnson BJ, Colby TD, Chin JK et al (1997) Proc Natl Acad Sci USA 94:12797

    Article  CAS  Google Scholar 

  44. Masgrau L, Roujeinikova A, Johannissen LO et al (2006) Science 312:237

    Article  CAS  Google Scholar 

  45. Johannissen LO, Hay S, Scrutton NS et al (2007) J Phys Chem B 111:2631

    Article  CAS  Google Scholar 

  46. Sessions RB, Dauber-Osguthorpe P, Osguthorpe DJ (1989) J Mol Biol 210:617

    Article  CAS  Google Scholar 

  47. Johannissen LO, Scrutton NS, Sutcliffe MJ (2008) J R Soc Interface 5(Suppl 3):S225

    Article  CAS  Google Scholar 

  48. Hothi P, Lee M, Cullis PM et al (2008) Biochemistry 47:183

    Article  CAS  Google Scholar 

  49. Farnum MF, Magde D, Howell EE et al (1991) Biochemistry 30:11567

    Article  CAS  Google Scholar 

  50. Radkiewicz JL, Brooks CL (2000) J Am Chem Soc 122:225

    Article  CAS  Google Scholar 

  51. Agarwal PK, Billeter SR, Rajagopalan PT et al (2002) Proc Natl Acad Sci USA 99:2794

    Article  CAS  Google Scholar 

  52. Agrawal PK, Billeter SR, Hammes-Schiffer S (2002) J Phys Chem B 106:3283

    Article  Google Scholar 

  53. Mincer JS, Schwartz SD (2003) J Phys Chem B 107:366

    Article  CAS  Google Scholar 

  54. Mincer JS, Schwartz SD (2003) J Prot Res 2:437

    Article  Google Scholar 

  55. Olsson MH, Parson WW, Warshel A (2006) Chem Rev 106:1737

    Article  CAS  Google Scholar 

  56. Olsson MH, Mavri J, Warshel A (2006) Philos Trans R Soc Lond B Biol Sci 361:1417

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Work in the authors’ laboratories is funded by the UK Biotechnology and Biological Sciences Research Council. NSS is a BBSRC Professorial Research Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nigel S. Scrutton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Johannissen, L.O., Hay, S., Pang, J., Sutcliffe, M.J., Scrutton, N.S. (2010). Integrating Computational Methods with Experiment Uncovers the Role of Dynamics in Enzyme-Catalysed H-Tunnelling Reactions. In: Paneth, P., Dybala-Defratyka, A. (eds) Kinetics and Dynamics. Challenges and Advances in Computational Chemistry and Physics, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3034-4_19

Download citation

Publish with us

Policies and ethics