Skip to main content

Tunneling Transmission Coefficients: Toward More Accurate and Practical Implementations

  • Chapter
  • First Online:

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 12))

Abstract

The accurate evaluation of quantum effects is of great importance in many reaction processes. Variational transition state theory with multidimensional tunneling is the natural choice for the study of these reactions, because it incorporates quantum effects through a multiplicative transmission coefficient and it can deal with large systems. Currently, the main approximation used for taking into account tunneling is the small-curvature approximation, mainly because the large curvature and the least-action approximations are computationally very demanding and their use it is usually associated to small systems. Here we describe two algorithms based on splines under tension, which allow the evaluation of these two transmission coefficients for large systems. The analysis of kinetic isotope effects on a model reaction show that the least-action transmission coefficient should be used instead of the more inexpensive, but probably less accurate small-curvature transmission coefficient.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Eyring H (1935) J Chem Phys 3:107–115

    Article  CAS  Google Scholar 

  2. Evans MG, Polanyi M (1935) Trans Faraday Soc 31:875–894

    Article  CAS  Google Scholar 

  3. Kohen A, Limbach HH (eds) (2006) Isotope effects in chemistry and biology. CRC Press, Boca Raton, FL

    Google Scholar 

  4. Hynes JT, Schowen RL, Klinman JP, Limbach HH (eds) (2007) Hydrogen-transfer reactions. Wiley-VCH, Weinheim

    Google Scholar 

  5. Gamow G (1928) Z Phys 51:204

    Article  CAS  Google Scholar 

  6. Eckart C (1930) Phys Rev 35:1303–1309

    Article  CAS  Google Scholar 

  7. Wigner E (1932) Z Phys Chem B19:203–216

    CAS  Google Scholar 

  8. Bell RP (1933) Proc Roy Soc A 139:466–474

    Article  CAS  Google Scholar 

  9. Johnston HS (1966) Gas phase reaction rate theory. Ronald Press, New York

    Google Scholar 

  10. Kemble EC (1937) The fundamental principles of quantum mechanics with elementary applications. Dover, New York

    Google Scholar 

  11. Wigner E (1937) J Chem Phys 5:720–725

    Article  CAS  Google Scholar 

  12. Horiuti J (1938) Bull Chem Soc Jpn 13:210–216

    Article  Google Scholar 

  13. Keck JC (1967) Adv Chem Phys 13:85–121

    Article  Google Scholar 

  14. Garrett BC, Truhlar DG (1979) J Chem Phys 70:1593–1598

    Article  CAS  Google Scholar 

  15. Garrett BC, Truhlar DG (1980) Acc Chem Res 13:440–448

    Article  Google Scholar 

  16. Pechukas P (1981) Annu Rev Phys Chem 32:159–177

    Article  CAS  Google Scholar 

  17. Truhlar DG, Hase WL, Hynes JT (1983) J Phys Chem 87:2664–2682

    Article  CAS  Google Scholar 

  18. Truhlar DG, Garrett BC (1984) Annu Rev Phys Chem 35:159–189

    Article  CAS  Google Scholar 

  19. Truhlar DG, Isaacson AD, Garrett BC (1985) In: Baer M (ed) Theory of chemical reaction dynamics. CRC Press, Boca Raton, FL

    Google Scholar 

  20. Truhlar DG, Garrett BC, Klippenstein SJ (1996) J Phys Chem 100:12771–12800

    Article  CAS  Google Scholar 

  21. Fernández-Ramos A, Ellingson BA, Garrett BC, Truhlar DG (2007) Rev Comput Chem 23:125–232

    Article  Google Scholar 

  22. Bowman JM, Wang D, Huang X, Huarte-Larrañaga F, Manthe U (2001) J Chem Phys 114:9683–9684

    Article  CAS  Google Scholar 

  23. Garrett BC, Truhlar DG (1979) J Phys Chem 83:1052–1079

    Article  CAS  Google Scholar 

  24. Truhlar DG, Kupperman A (1971) J Am Chem Soc 93:1840–1851

    Article  Google Scholar 

  25. Fukui K, Kato S, Fujimoto H (1975) J Am Chem Soc 97:1–7

    Article  CAS  Google Scholar 

  26. Marcus RA (1966) J Chem Phys 45:4493–4499

    Article  CAS  Google Scholar 

  27. Marcus RA, Coltrin ME (1977) J Chem Phys 67:2609–2613

    Article  CAS  Google Scholar 

  28. Skodje RT, Truhlar DG, Garrett BC (1981) J Phys Chem 85:3019–3023

    Article  CAS  Google Scholar 

  29. Skodje RT, Truhlar DG, Garrett BC (1982) J Chem Phys 77:5955–5976

    Article  CAS  Google Scholar 

  30. D-h Lu, Truong TN, Melissas VS, Lynch GC, Liu Y-P, Garrett BC, Steckler R, Isaacson AD, Rai SN, Hancock GC, Lauderdale JG, Joseph T, Truhlar DG (1992) Comput Phys Commun 71:235–262

    Article  Google Scholar 

  31. Liu YP, Lynch GC, Truong TN, D-h Lu, Truhlar DG (1993) J Am Chem Soc 115:2408–2415

    Article  CAS  Google Scholar 

  32. Garrett BC, Truhlar DG, Wagner AF, Dunning TH Jr (1983) J Chem Phys 78:4400–4413

    Article  CAS  Google Scholar 

  33. Garrett BC, Abusalbi N, Kouri DJ, Truhlar DG (1985) J Chem Phys 83:2252–2258

    Article  CAS  Google Scholar 

  34. Garrett BC, Joseph T, Truong TN, Truhlar DG (1989) Chem Phys 136:271–293

    Article  CAS  Google Scholar 

  35. Truong TN, D-h Lu, Lynch GC, Liu Y-P, Melissas VS, Stewart JJP, Steckler R, Garrett BC, Isaacson AD, González-Lafont A, Rai SN, Hancock GC, Joseph T, Truhlar DG (1993) Comput Phys Commun 75:143–159

    Article  CAS  Google Scholar 

  36. Liu Y-P, D-h Lu, González-Lafont A, Truhlar DG, Garrett BC (1993) J Am Chem Soc 115:7806–7817

    Article  CAS  Google Scholar 

  37. Fernández-Ramos A, Truhlar DG (2001) J Chem Phys 114:1491–1496

    Article  Google Scholar 

  38. Garrett BC, Truhlar DG (1983) J Chem Phys 79:4931–4938

    Article  CAS  Google Scholar 

  39. Lynch GC, Truhlar DG, Garrett BC (1989) J Chem Phys 90:3102–3109

    Article  CAS  Google Scholar 

  40. Meana-Pañeda R, Truhlar DG, Fernández-Ramos A (2010) J Chem Theory Comput 6:6–17

    Article  Google Scholar 

  41. Pu J, Gao J, Truhlar DG (2006) Chem Rev 106:3140–3169

    Article  CAS  Google Scholar 

  42. Marcus RA (2006) Phil Trans R Soc Lond B 361:1445–1455

    Article  CAS  Google Scholar 

  43. Klinman JP (2006) Phil Trans R Soc B 361:1323–1331

    Article  CAS  Google Scholar 

  44. Nagel ZD, Klinman JP (2006) Chem Rev 106:3095–3118

    Article  CAS  Google Scholar 

  45. Wong KY, Richard JP, Gao J (2009) J Am Chem Soc 131:13963–13971

    Article  CAS  Google Scholar 

  46. Smedarchina Z, Siebrand W, Fernández-Ramos A, Cui Q (2003) J Am Chem Soc 125:243–251

    Article  CAS  Google Scholar 

  47. Tautermann CS, Loferer MJ, Voegele AF, Liedl KR (2004) J Chem Phys 120:11650–11657

    Article  CAS  Google Scholar 

  48. Smedarchina Z, Siebrand W (2005) Chem Phys Lett 410:370–376

    Article  CAS  Google Scholar 

  49. Zhang Y, Lin H (2009) J Phys Chem A 113:11501–11508

    Article  CAS  Google Scholar 

  50. Dybala-Defratyka A, Paneth P, Banerjee R, Truhlar DG (2007) Proc Natl Acad Sci USA 104:10774–10779

    Article  CAS  Google Scholar 

  51. Pang J, Hay S, Scrutton NS, Sutcliffe MJ (2008) J Am Chem Soc 130:7092–7097

    Article  CAS  Google Scholar 

  52. Hirschfelder JO, Wigner E (1939) J Chem Phys 7:616–628

    Article  CAS  Google Scholar 

  53. Kuppermann A (1979) J Phys Chem 83:171–187

    Article  CAS  Google Scholar 

  54. Truhlar DG, Kuppermann A (1972) J Chem Phys 56:2232–2252

    Article  CAS  Google Scholar 

  55. Allison TC, Truhlar DG (1998) In: Thompson DL (ed) Modern methods for multidimensional dynamics computations in chemistry. World Scientific, Singapore, pp 618–712

    Chapter  Google Scholar 

  56. Babamov VK, Marcus RA (1981) J Chem Phys 74:1790–1798

    Article  CAS  Google Scholar 

  57. Kim Y (1996) J Am Chem Soc 118:1522–1528

    Article  CAS  Google Scholar 

  58. Kim Y (1998) J Phys Chem A 102:3025–3036

    Article  CAS  Google Scholar 

  59. Loerting T, Liedl KR, Rode BM (1998) J Am Chem Soc 120:404–412

    Article  CAS  Google Scholar 

  60. Kreevoy MM, Ostovic D, Truhlar DG, Garrett BC (1986) J Phys Chem 90:3766–3774

    Article  CAS  Google Scholar 

  61. Renka RJ (1987) SIAM J Sci Stat Comput 8:393–415

    Article  Google Scholar 

  62. Renka RJ (1993) ACM Trans Math Software 19:81–94

    Article  Google Scholar 

  63. Fernández-Ramos A, Truhlar DG, Corchado JC, Espinosa-Garcia J (2002) J Phys Chem A 106:4957–4960

    Article  Google Scholar 

  64. Fernández-Ramos A, Truhlar DG (2005) J Chem Theory Comput 1:1063–1078

    Article  Google Scholar 

  65. Cline AK, Renka RJ (1984) Rocky Mountain J Math 14:223–237

    Article  Google Scholar 

  66. Jordan M, Gilbert R (1995) J Chem Phys 102:5669–5682

    Article  CAS  Google Scholar 

  67. Zuev PS, Sheridan RS, Albu TV, Truhlar DG, Hrovat DA, Borden WT (2003) Science 299:867–870

    Article  CAS  Google Scholar 

  68. Datta A, Hrovat DA, Borden WT (2008) J Am Chem Soc 130:6684–6685

    Article  CAS  Google Scholar 

  69. Kim Y, Marenich AV, Zheng J, Kim KH, Kołodziejska-Huben M, Rostkowski M, Paneth P, Truhlar DG (2008) J Chem Theory Comput 5:59–67

    Article  Google Scholar 

  70. Tejero I, Gonzalez-Garcia N, Gonzalez-Lafont A, Lluch JM (2007) J Am Chem Soc 129:5846–5854

    Article  CAS  Google Scholar 

  71. Masgrau L, Ranaghan KE, Scrutton NS, Mulholland AJ, Sutcliffe MJ (2007) J Phys Chem B 111:3032–3047

    Article  CAS  Google Scholar 

  72. Peles DN, Thoburn JD (2008) J Org Chem 73:3135–3144

    Article  CAS  Google Scholar 

  73. Wu A, Mader EA, Datta A, Borden WT, Mayer JM (2009) J Am Chem Soc 131:11985–11997

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Fernández-Ramos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Meana-Pañeda, R., Fernández-Ramos, A. (2010). Tunneling Transmission Coefficients: Toward More Accurate and Practical Implementations. In: Paneth, P., Dybala-Defratyka, A. (eds) Kinetics and Dynamics. Challenges and Advances in Computational Chemistry and Physics, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3034-4_18

Download citation

Publish with us

Policies and ethics