Skip to main content

QM/MM Energy Functions, Configuration Optimizations, and Free Energy Simulations of Enzyme Catalysis

  • Chapter
  • First Online:
  • 1635 Accesses

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 12))

Abstract

Combined quantum mechanical/molecular mechanical (QM/MM) models have been established as efficient approaches to simulate chemical reactions in complex molecular systems including enzymes. The QM/MM Hamiltonian is defined based on partitioning a molecular system into a reactive center and its surrounding, namely, the QM and MM regions. How to properly treat the QM/MM interface, which involves both covalent and non-covalent interactions, has been one of the central focuses in QM/MM method development. Techniques for energy minimization and conformational sampling based on QM/MM Hamiltonians have also been continuously developed, with the goal to determine reaction paths and potential/free energy surfaces of complex molecular systems efficiently and reliably. Accompanying method development, there have been an increasing number of studies applying QM/MM to various enzyme systems and providing new insights into their mechanisms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Warshel A (1991) Computer modeling of chemical reactions in enzymes and solutions. Wiley, New York

    Google Scholar 

  2. Wolfenden R, Snider MJ (2001) Acc Chem Res 34:938–945

    Article  CAS  Google Scholar 

  3. Garcia-Viloca M, Gao J, Karplus M, Truhlar DG (2004) Science 303:186–195

    Article  CAS  Google Scholar 

  4. Zhang X, Houk KN (2005) Acc Chem Res 38:379–385

    Article  CAS  Google Scholar 

  5. Glasstone S, Laidler KJ, Eyring H (1941) The theory of rate processes. McGraw-Hill, New York

    Google Scholar 

  6. Atkins P, Friedman R (2000) Molecular quantum mechanics, 4th edn. Oxford University Press, New York

    Google Scholar 

  7. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) J Am Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

  8. MacKerell AD Jr et al (1998) J Phys Chem B 102:3586–3616

    Article  CAS  Google Scholar 

  9. Scott WRP, Hunenberger P, Tironi IG, Mark AE, Billeter SR, Fennen J, Torda AE, Huber T, Krueger P, van Gunsteren WF (1999) J Phys Chem A 103:3596–3607

    Article  CAS  Google Scholar 

  10. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) J Am Chem Soc 118:11225–11236

    Article  CAS  Google Scholar 

  11. Warshel A, Levitt M (1976) J Mol Biol 103:227–249

    Article  CAS  Google Scholar 

  12. Field MJ, Bash PA, Karplus M (1990) J Comput Chem 11:700–733

    Article  CAS  Google Scholar 

  13. Senn HM, Thiel W (2009) Angew Chem Int Ed 48:1198–1229

    Article  CAS  Google Scholar 

  14. Gao J, Ma S, Major DT, Nam K, Pu J, Truhlar DG (2006) Chem Rev 106:3188–3209

    Article  CAS  Google Scholar 

  15. Lin H, Truhlar DG (2007) Theor Chem Acc 117:185–199

    Article  CAS  Google Scholar 

  16. Hu H, Yang W (2008) Annu Rev Phys Chem 59:573–601

    Article  CAS  Google Scholar 

  17. Maseras F, Morokuma K (1995) J Comput Chem 16:1170–1179

    Article  CAS  Google Scholar 

  18. Svensson M, Humbel S, Froese RDJ, Matsubara T, Sieber S, Morokuma K (1996) J Phys Chem 100:19357–19363

    Article  CAS  Google Scholar 

  19. Murphy RB, Philipp DM, Friesner RA (2000) J Comput Chem 21:1442–1457

    Article  CAS  Google Scholar 

  20. Riccardi D, Li G, Cui Q (2004) J Phys Chem B 108:6467–6478

    Article  CAS  Google Scholar 

  21. Thompson MA (1996) J Phys Chem 100:14492–14507

    Article  CAS  Google Scholar 

  22. Gao J (1997) J Comput Chem 18:1061–1071

    Article  CAS  Google Scholar 

  23. Geerke DP, Thiel S, Thiel W, van Gunsteren WF (2007) J Chem Theory Comput 3:1499–1509

    Article  CAS  Google Scholar 

  24. Bakowies D, Thiel W (1996) J Phys Chem 100:10580–10594

    Article  CAS  Google Scholar 

  25. Rod TH, Ryde U (2005) J Chem Theory Comput 1:1240–1251

    Article  CAS  Google Scholar 

  26. Zhang Y, Lee T-S, Yang W (1999) J Chem Phys 110:46–54

    Article  CAS  Google Scholar 

  27. Zhang Y (2006) Theor Chem Acc 116:43–50

    Article  CAS  Google Scholar 

  28. Assfeld X, Rivail JL (1996) Chem Phys Lett 263:100–106

    Article  CAS  Google Scholar 

  29. Murphy RB, Philipp DM (2000) Chem Phys Lett 321:113–120

    Article  CAS  Google Scholar 

  30. Gao J, Amara P, Alhambra C, Field MJ (1998) J Phys Chem A 102:4714–4721

    Article  CAS  Google Scholar 

  31. Eichinger M, Tavan P, Hutter J, Parrinello M (1999) J Chem Phys 110:10452–10467

    Article  CAS  Google Scholar 

  32. Amara P, Field MJ (2003) Theor Chem Acc 109:43–52

    Article  CAS  Google Scholar 

  33. Dinner AR, Lopez X, Karplus M (2003) Theor Chem Acc 109:118–124

    Article  CAS  Google Scholar 

  34. Cui Q, Karplus M (2003) Adv Protein Chem 66:315–372

    Article  CAS  Google Scholar 

  35. Nam K, Gao J, York DM (2005) J Chem Theory Comput 1:2–13

    Article  CAS  Google Scholar 

  36. Liu H, Elstner M, Kaxiras E, Fraunheim T, Hermans J, Yang W (2001) Proteins Struct Funct Genet 44:484–489

    Article  CAS  Google Scholar 

  37. Ewald PP (1921) Ann Phys 64:253–287

    Article  Google Scholar 

  38. Darden T, York DM, Pedersen L (1993) J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  39. Gilson MK, Honig B (1988) Proteins Struct Funct Genet 4:7–18

    Article  CAS  Google Scholar 

  40. Honig B (1995) Science 268:1144–1149

    Article  CAS  Google Scholar 

  41. Bashford D (2004) Front Biosci 9:1082–1099

    Article  CAS  Google Scholar 

  42. Singh UC, Kollman PA (1984) J Comput Chem 5:129–145

    Article  CAS  Google Scholar 

  43. Besler BH, Merz KM, Kollman PA (1990) J Comput Chem 11:431–439

    Article  CAS  Google Scholar 

  44. Zhou YC, Feig M, Wei GW (2008) J Comput Chem 29:87–97

    Article  CAS  Google Scholar 

  45. Christen M, van Gunsteren WF (2008) J Comput Chem 29:157–166

    Article  CAS  Google Scholar 

  46. Farkas O, Schlegel HB (2002) Phys Chem Chem Phys 2002 4:11-15

    Article  CAS  Google Scholar 

  47. Schlegel HB (2003) J Comput Chem 24:1514–1527

    Article  CAS  Google Scholar 

  48. Huber T, Torda AE, van Gunsteren WF (1994) J Comput Aided Mol Des 8:695–708

    Article  CAS  Google Scholar 

  49. Grubmuller H (1995) Phys Rev E 52:2893–2906

    Article  Google Scholar 

  50. Zhang Y, Liu H, Yang W (2000) J Chem Phys 112:3483–3492

    Article  CAS  Google Scholar 

  51. Hall RJ, Hindle SA, Burton NA, Hillier IH (2000) J Comput Chem 21:1433–1441

    Article  CAS  Google Scholar 

  52. Klaehn M, Braun-Sand S, Rosta E, Warshel A (2005) J Phys Chem B 109:15645–15650

    Article  CAS  Google Scholar 

  53. Bhattacharyya S (2005) Biochemistry 44:16549–16563

    Article  CAS  Google Scholar 

  54. Garcia-Viloca M, Alhambra C, Truhlar DG, Gao J (2002) J Am Chem Soc 124:7268–7269

    Article  CAS  Google Scholar 

  55. Pulay P, Fogarasi G (1992) J Chem Phys 96:2856–2860

    Article  CAS  Google Scholar 

  56. Ayala PY, Schlegel HB (1997) J Chem Phys 107:375–384

    Article  CAS  Google Scholar 

  57. Billeter SR, Turner AJ, Thiel W (2000) Phys Chem Chem Phys 2:2177–2186

    Article  CAS  Google Scholar 

  58. Elber R, Karplus M (1987) Chem Phys Lett 139:375–380

    Article  CAS  Google Scholar 

  59. Czerminski R, Elber R (1990) Int J Quant Chem 24:167–186

    Article  CAS  Google Scholar 

  60. Fischer S, Karplus M (1992) Chem Phys Lett 194:252–261

    Article  CAS  Google Scholar 

  61. Henkelmaan G, Jonsson H (2000) J Chem Phys 113:9978–9985

    Article  Google Scholar 

  62. Henkelmaan G, Uberuaga BP, Jonsson H (2000) J Chem Phys 113:9901–9904

    Article  Google Scholar 

  63. Chu J-W, Trout BL, Brooks BR (2003) J Chem Phys 119:12708–12717

    Article  CAS  Google Scholar 

  64. Xie L, Liu H, Yang W (2004) J Chem Phys 120:8039–8052

    Article  CAS  Google Scholar 

  65. Zhao Z, Liu H (2008) J Phys Chem B 112:13091–13100

    Article  CAS  Google Scholar 

  66. Torrie GM, Valleau JP (1977) J Comput Phys 23:187–199

    Article  Google Scholar 

  67. Kumar S, Bouzida D, Swendsen RH, Kollman PA, Rosenberg JM (1992) J Comput Chem 13:1011–1021

    Article  CAS  Google Scholar 

  68. Kumar S, Rosenberg JM, Bouzida D, Swendsen RH, Kollman PA (1995) J Comput Chem 16:1339–1350

    Article  CAS  Google Scholar 

  69. Liu H, Mueller-Plathe F, van Gunsteren WF (1996) J Mol Biol 261:454–469

    Article  CAS  Google Scholar 

  70. Liu H, Mueller-Plathe F, van Gunsteren WF (1995) J Chem Phys 102:1722–1730

    Article  CAS  Google Scholar 

  71. Wu N, Mo Y, Gao J, Pai EF (2000) Proc Natl Acad Sci U S A 97:2017–2022

    Article  CAS  Google Scholar 

  72. Garcia-Viloca M, Truhlar DG, Gao J (2003) Biochemistry 42:13558–13575

    Article  CAS  Google Scholar 

  73. Hu P, Wang SL, Zhang Y (2008) J Am Chem Soc 130:16721–16728

    Article  CAS  Google Scholar 

  74. Liu H, Zhang Y, Yang W (2000) J Am Chem Soc 122:6560–6570

    Article  CAS  Google Scholar 

  75. Zwanzig R (1954) J Chem Phys 22:1420–1426

    Article  CAS  Google Scholar 

  76. Jorgensen WL, Ravimohan C (1985) J Chem Phys 83:3050–3054

    Article  CAS  Google Scholar 

  77. Chandrasekhar J, Smith SF, Jorgensen WL (1985) J Am Chem Soc 107:154–163

    Article  CAS  Google Scholar 

  78. Donini O, Darden T, Kollman PA (2000) J Am Chem Soc 122:12270–12280

    Article  CAS  Google Scholar 

  79. Hu H, Lu Z, Yang W (2007) J Chem Theory Comput 3:390–406

    Article  CAS  Google Scholar 

  80. Dewar MJS, Thiel W (1977) J Am Chem Soc 99:4899–4907

    Article  CAS  Google Scholar 

  81. Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) J Am Chem Soc 107:3902–3909

    Article  CAS  Google Scholar 

  82. Stewart JJP (1989) J Comput Chem 10:209–220

    Article  CAS  Google Scholar 

  83. Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim T, Suhai S, Seifert G (1998) Phys Rev B 58:7260–7268

    Article  CAS  Google Scholar 

  84. Cui Q, Elstner M, Kaxiras E, Frauenheim T, Karplus M (2001) J Phys Chem B 105:569–585

    Article  CAS  Google Scholar 

  85. Elstner M, Frauenheim T, Suhai S (2003) THEOCHEM 632:29–41

    Article  CAS  Google Scholar 

  86. Gonzalez-Lafont A, Truong TN, Truhlar DG (1991) J Phys Chem 95:4618–4627

    Article  CAS  Google Scholar 

  87. Cui Q, Karplus M (2002) J Phys Chem B 106:1768–1798

    Article  CAS  Google Scholar 

  88. Ridder L, Rietjens IMCM, Vervoort J, Mulholland AJ (2002) J Am Chem Soc 124:9926–9936

    Article  CAS  Google Scholar 

  89. Aqvist J, Warshel A (1993) Chem Rev 93:2523–2544

    Article  Google Scholar 

  90. Car R, Parrinello M (1985) Phys Rev Lett 55:2471–2474

    Article  CAS  Google Scholar 

  91. Colombo MC, Gossens C, Tavernelli I, Rothlisberger U (2006) In: Naidoo KJ, Brady J, Field MJ, Gao J, Hann M (eds) Modelling molecular structure and reactivity in biological systems. Royal Society of Chemistry, Cambridge

    Google Scholar 

  92. Rothlisberger U, Carloni P (2006) In: Ferrario M, Ciccotti G, Binder K (eds) Computer simulations in condensed matter systems: from materials to chemical biology, vol 2. Springer, Berlin

    Google Scholar 

  93. Dong M, Liu H (2008) J Phys Chem B 112:10280–10290

    Article  CAS  Google Scholar 

  94. Lu Z, Yang W (2004) J Chem Phys 121:89–100

    Article  CAS  Google Scholar 

  95. Davis ME, Madura JD, Luty BA, McCammon JA (1991) Comput Phys Commun 62:187–197

    Article  CAS  Google Scholar 

  96. Madura JD, Briggs JM, Wade RC, Davis ME, Luty BA, Ilin A, Antosiewicz J, Gilson MK, Bagheri B, Scott LR, McCammon JA (1995) Comput Phys Commun 91:57–95

    Article  CAS  Google Scholar 

  97. Zhang Y, Kua J, McCammon JA (2003) J Phys Chem B 107:4459–4463

    Article  CAS  Google Scholar 

  98. Bussi G, Laio A, Parrinello M (2006) Phys Rev Lett 96:090601

    Article  Google Scholar 

  99. Ensing B, De Vivo M, Liu ZW, Moore P, Klein ML (2006) Acc Chem Res 39:73–81

    Article  CAS  Google Scholar 

  100. Yang W, Bitetti-Putzer R, Karplus M (2004) J Chem Phys 120:9450–9453

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The support from Chinese Natural Science Foundation with grant number 30970560 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyan Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Netherlands

About this chapter

Cite this chapter

Liu, H. (2010). QM/MM Energy Functions, Configuration Optimizations, and Free Energy Simulations of Enzyme Catalysis. In: Paneth, P., Dybala-Defratyka, A. (eds) Kinetics and Dynamics. Challenges and Advances in Computational Chemistry and Physics, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3034-4_12

Download citation

Publish with us

Policies and ethics