Skip to main content

Computational Methods for the Self-Force in Black Hole Spacetimes

  • Chapter
  • First Online:
Book cover Mass and Motion in General Relativity

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 162))

  • 2285 Accesses

Abstract

We survey the set of computational methods devised for implementing the MiSaTaQuWa formulation in practice, for orbits around Kerr black holes. We focus on the gravitational self-force (SF) and review in detail two of these methods: (i) the standard mode-sum method, in which the perturbation field is decomposed into multipole harmonics and the MiSaTaQuWa regularization is performed, effectively, mode by mode; and (ii) m-mode regularization, whereby one regularizes individual azimuthal modes of the full perturbation. The implementation of these strategies involves the numerical integration of the relevant perturbation equations, and we discuss several practical issues that arise and ways to deal with them. These issues include the choice of gauge, the numerical representation of the particle singularity, and the handling of high-frequency contributions near the particle in frequency-domain calculations. As an example, we show results from an actual computation of the gravitational SF for an eccentric geodesic orbit around a Schwarzschild black hole, using direct numerical integration of the Lorenz-gauge perturbation equations in the time domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the original MiSaTaQuWa formulation, the SF is not expressed directly in terms of the gradient of \(\bar{{h}}_{\alpha \beta }^{\mathrm{tail}}\), but rather as a worldline integral over the gradient of the relevant retarded Green’s function (cf. Eq. 1.9.6 of Poisson [97]). The commutation of the derivative operator and the worldline integral produces local terms at x, which, however, vanish (in the vacuum case which concerns us here) upon contraction with k αβγδ at the limit x → z.

  2. 2.

    The quantity \({k}^{\alpha \beta \gamma \delta }\bar{{h}}_{\beta \gamma ;\delta }\) is the linear perturbation in the connection coefficients, δΓ γβ α(h μν), projected orthogonally to Γ; that is, \({k}^{\alpha \beta \gamma \delta }\bar{{h}}_{\beta \gamma ;\delta } = ({g}^{\beta \gamma } + {u}^{\beta }{u}^{\gamma })\delta {\Gamma }_{\beta \gamma }^{\alpha }\).

  3. 3.

    Here we ignore the vectorial nature of F α and F S α and treat each of their Boyer–Lindquist components as a scalar function. We do this for a mere mathematical convenience. See [62] for a more sophisticated, covariant treatment.

  4. 4.

    Note that the form of F αl and F S αl will depend on the specific off-worldline extension chosen for the tensor k. However, this ambiguity disappears upon taking the limit x → z, and the final SF is of course insensitive to the choice of extension.

  5. 5.

    It is easy to convince oneself that the two-sided limits δr → 0 ±  in Eq. 35 are equal in magnitude and different in sign: Notice ε0( − δr, − x, y) = ε0(δr, x, y) (for δt = 0), which, together with the fact that the integration domain is symmetric in x, implies that the integral in Eq. 35 is an odd function of δr.

  6. 6.

    The gauge conditions (1) do not fully specify the gauge: There is a residual gauge freedom within the family of Lorenz gauges, h αβ → h αβ + ξα; β + ξβ; α, with any ξμ satisfying □ ξμ = 0. It is easy to verify that both Eqs. 1 and 43 remain invariant under such gauge transformations.

  7. 7.

    To simplify the appearance of Eq. 45 we have used here a slightly different normalization than that of [15] for the functions \(\bar{{h}}^{(i)lm}\).

  8. 8.

    A full separation of variables in Kerr is possible within Teukolsky’s formalism, which, alas, brings about the metric reconstruction and gauge-related difficulties discussed in previous chapters. A full separation of the metric perturbation equations themselves, in Kerr, has not been formulated yet, to the best of our knowledge.

  9. 9.

    This can be shown by integrating S αβ res over a small 3-ball containing the particle (at a given time), and then inspecting the limit as the radius of the ball tends to zero [11].

  10. 10.

    It should not come as a surprise that at x = z the sum over m-modes F punc α, m − F S α, m (which are all zero) fails to recover the original function F punc α − F S α (which is discontinuous and hence indefinite). Recall that the formal Fourier sum at a step discontinuity (where the function itself is indefinite) is in fact convergent: it yields the two-side average value of the function at the discontinuity. Technically, this peculiarity of the formal Fourier expansion is due simply to the noninterchangeability of the sum and limit at the point of discontinuity.

References

  1. P. Amaro-Seoane, J.R. Gair, M. Freitag, M. Coleman Miller, I. Mandel, C.J. Cutler, S. Babak, Class. Q. Grav. 24, R113 (2007)

    Article  MATH  ADS  Google Scholar 

  2. P.R. Anderson, B.L. Hu, Phys. Rev. D 69, 064039 (2004); Erratum, ibidem 75, 129901(E) (2007)

    Google Scholar 

  3. P.R. Anderson, A. Eftekharzadeh, B.L. Hu, Phys. Rev. D 73, 064023 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  4. W.G. Anderson, A.G. Wiseman, Class. Q. Grav. 22, S783 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. W.G. Anderson, E.E. Flanagan, A.C. Ottewill, Phys. Rev. D 71, 024036 (2005)

    Article  ADS  Google Scholar 

  6. L. Barack, Phys. Rev. D 62, 084027 (2000)

    Article  ADS  MATH  Google Scholar 

  7. L. Barack, Phys. Rev. D 64, 084021 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  8. L. Barack, L.M. Burko, Phys. Rev. D 62, 084040 (2000)

    Article  ADS  Google Scholar 

  9. L. Barack, C. Cutler, Phys. Rev. D 69, 082005 (2004)

    Article  ADS  Google Scholar 

  10. L. Barack, C. Cutler, Phys. Rev. D 75, 042003 (2007)

    Article  ADS  Google Scholar 

  11. L. Barack, D.A. Golbourn, Phys. Rev. D 76, 044020 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  12. L. Barack, D.A. Golbourn, N. Sago, Phys. Rev. D 76, 124036 (2007)

    Article  ADS  Google Scholar 

  13. L. Barack, D.A. Golbourn, N. Sago, in preparation

    Google Scholar 

  14. L. Barack, C.O. Lousto, Phys. Rev. D 66, 061502 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  15. L. Barack, C.O. Lousto, Phys. Rev. D 72, 104026 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  16. L. Barack, Y. Mino, H. Nakano, A. Ori, M. Sasaki, Phys. Rev. Lett. 88, 091101 (2002)

    Article  ADS  Google Scholar 

  17. L. Barack, A. Ori, Phys. Rev. D 61, 061502 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  18. L. Barack, A. Ori, Phys. Rev. D 64, 124003 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  19. L. Barack, A. Ori, Phys. Rev. D 66, 084022 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  20. L. Barack, A. Ori, arXiv:gr-qc/0212103v2 (2003)

    Google Scholar 

  21. L. Barack, A. Ori, Phys. Rev. D 67, 024029 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  22. L. Barack, A. Ori, Phys. Rev. Lett. 90, 111101 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  23. L. Barack, A. Ori, N. Sago, Phys. Rev. D 78, 084021 (2008)

    Article  ADS  Google Scholar 

  24. L. Barack, N. Sago, Phys. Rev. D 75, 064021 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  25. L. Barack, N. Sago, Phys, Rev. Lett. 102, 191101 (2009)

    Article  ADS  Google Scholar 

  26. L. Barack, N. Sago, Phys. Rev. D 81, 084021 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  27. J.L. Barton, D.J. Lazar, D.J. Kennefick, G. Khanna, L.M. Burko, Phys. Rev. D 78, 064042 (2008)

    Article  ADS  Google Scholar 

  28. N.T. Bishop, R. Gomez, S. Husa, L. Lehner, J. Winicour, Phys. Rev. D 68, 084015 (2003)

    Article  ADS  Google Scholar 

  29. L.M. Burko, Class. Q. Grav. 17, 227 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. L.M. Burko, Phys. Rev. Lett. 84, 4529 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  31. L.M. Burko, G. Khanna, Europhys. Lett. 78, 60005 (2007)

    Article  ADS  Google Scholar 

  32. L.M. Burko, Y.T. Liu, Phys. Rev. D 64, 024006 (2001)

    Article  ADS  Google Scholar 

  33. L.M. Burko, Y.T. Liu, Y. Soen, Phys. Rev. D 63, 024015 (2001)

    Article  ADS  Google Scholar 

  34. L.M. Burko, A.I. Harte, E. Poisson, Phys. Rev. D 65, 124006 (2002)

    Article  ADS  Google Scholar 

  35. P. Canizares, C.F. Sopuerta, J. Phys. Conf. S. 154, 012053 (2009)

    Article  ADS  Google Scholar 

  36. P. Canizares, C.F. Sopuerta, Phys. Rev. D 79, 084020 (2009)

    Article  ADS  Google Scholar 

  37. M. Casals, S.R. Dolan, A.C. Ottewill, B. Wardell, Phys. Rev. D 79, 124043 (2009)

    Article  ADS  Google Scholar 

  38. P. L. Chrzanowski, Phys. Rev. D 11, 2042 (1975)

    Article  ADS  Google Scholar 

  39. N.A. Collins, S.A. Hughes, Phys. Rev. D 69, 124022 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  40. S. Detweiler, Phys. Rev. Lett. 86, 1931 (2001)

    Article  ADS  Google Scholar 

  41. S. Detweiler, Class. Q. Grav. 22, S681 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  42. S. Detweiler, Phys. Rev. D 77, 124026 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  43. S. Detweiler, E. Poisson, Phys. Rev. D 69, 084019 (2004)

    Article  ADS  Google Scholar 

  44. S. Detweiler, B.F. Whiting, Phys. Rev. D 67, 024025 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  45. S. Detweiler, E. Messaritaki, B.F. Whiting, Phys. Rev. D 67, 104016 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  46. B.S. DeWitt, R.W. Brehme, Ann. Phys. (N.Y.) 9, 220 (1960)

    Google Scholar 

  47. B.S. DeWitt, C.M. DeWitt, Physics (Long Island City, NY) 1, 3 (1964)

    Google Scholar 

  48. L.M. Diaz-Rivera, E. Messaritaki, B.F. Whiting, S. Detweiler, Phys. Rev. D 70, 124018 (2004)

    Article  ADS  Google Scholar 

  49. S. Drasco, E.E. Flanagan, S.A. Hughes, Class. Q. Grav. 22, S801 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  50. S. Drasco, S.A. Hughes, Phys. Rev. D 73, 024027 (2006)

    Article  ADS  Google Scholar 

  51. S.E. Field, J.S. Hesthaven, S.R. Lau, Class. Quant. Grav. 26, 165010 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  52. J.R. Gair, Class. Quant. Grav. 26, 094034 (2009)

    Article  ADS  Google Scholar 

  53. J.R. Gair, L. Barack, T. Creighton, C. Cutler, S.L. Larson, E.S. Phinney, M. Vallisneri, Class. Q. Grav. 21, S1595 (2004)

    Article  MATH  ADS  Google Scholar 

  54. J.R. Gair, C. Li, I. Mandel, Phys. Rev. D 77, 024035 (2008)

    Article  ADS  Google Scholar 

  55. K. Ganz, W. Hikida, H. Nakano, N. Sago, T. Tanaka, Prog. Theor. Phys. 117, 1041 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  56. J.A. Gonzalez, U. Sperhake, B. Bruegmann, Phys. Rev. D 79, 124006 (2009)

    Article  ADS  Google Scholar 

  57. S.E. Gralla, R.M. Wald, Class. Q. Grav. 25, 205009 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  58. C. Gundlach, G. Calabrese, I. Hinder, J.M. Martin-García, Class. Q. Grav. 22, 3767 (2005)

    Article  MATH  Google Scholar 

  59. R. Haas, Phys. Rev. D 75, 124011 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  60. R. Haas, Presentation at the 11th Capra meeting, Orléans, June 2008

    Google Scholar 

  61. R. Haas, E. Poisson, Class. Q. Grav. 22, S739 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  62. R. Haas, E. Poisson, Phys. Rev. D 74, 044009 (2006)

    Article  ADS  Google Scholar 

  63. W. Hikida, S. Jhingan, H. Nakano, N. Sago, M. Sasaki, T. Tanaka, Prog. Theor. Phys. 111, 821 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  64. W. Hikida, S. Jhingan, H. Nakano, N. Sago, M. Sasaki, T. Tanaka, Prog. Theor. Phys. 113, 283 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  65. T. Hinderer, E.E. Flanagan, Phys. Rev. D 78, 064028 (2008)

    Article  ADS  Google Scholar 

  66. J.M. Hobbs, Ann. Phys. (N.Y.) 47, 141 (1968)

    Google Scholar 

  67. S.A. Hughes, S. Drasco, E.E. Flanagan, J. Franklin, Phys. Rev. Lett. 94, 221101 (2005)

    Article  ADS  Google Scholar 

  68. G. James, Advanced Modern Engineering Mathematics, 3rd edn., Section 4.2.8. (Pearson, Harlow, 2004)

    Google Scholar 

  69. P. Jaranowski et al., Class. Q. Grav. 25, 114020 (2008)

    Article  ADS  Google Scholar 

  70. T.S. Keidl, J.L. Friedman, A.G. Wiseman, Phys. Rev. D 75, 124009 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  71. G. Khanna, Phys. Rev. D 69, 024016 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  72. W. Krivan, P. Laguna, P. Papadopoulos, Phys. Rev. D 54, 4728 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  73. W. Krivan, P. Laguna, P. Papadopoulos, N. Andersson, Phys. Rev. D 56, 3395 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  74. R. Lopez-Aleman, G. Khanna, J. Pullin, Class. Q. Grav. 20, 3259 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  75. C.O. Lousto, Phys. Rev. Lett. 84, 5251 (2000)

    Article  ADS  Google Scholar 

  76. C.O. Lousto, Class. Q. Grav. 22, S543 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  77. C.O. Lousto, H. Nakano, Class. Q. Grav. 25, 145018 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  78. C.O. Lousto, R.H. Price, Phys. Rev. D 56, 6439 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  79. K. Martel, Phys. Rev. D 69, 044025 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  80. K. Martel, E. Poisson, Phys. Rev. D 66, 084001 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  81. Y. Mino, Phys. Rev. D 67, 084027 (2003)

    Article  ADS  Google Scholar 

  82. Y. Mino, Class. Q. Grav. 22, S717 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  83. Y. Mino, Prog. Theor. Phys. 115, 43 (2006)

    Article  MATH  ADS  Google Scholar 

  84. Y. Mino, Phys. Rev. D 77, 044008 (2008)

    Article  ADS  Google Scholar 

  85. Y. Mino, H. Nakano, Progr. Theor. Phys. 100, 507 (1998)

    Article  ADS  Google Scholar 

  86. Y. Mino, M. Sasaki, T. Tanaka, Phys. Rev. D 55, 3457 (1997)

    Article  ADS  Google Scholar 

  87. Y. Mino, H. Nakano, M. Sasaki, Prog. Theor. Phys. 108, 1039 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  88. V. Moncrief, Ann. Phys. (N.Y.) 88, 323 (1974)

    Google Scholar 

  89. H. Nakano, M. Sasaki, Prog. Theor. Phys. 105, 197 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  90. H. Nakano, Y. Mino, M. Sasaki, Prog. Theor. Phys. 106, 339 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  91. H. Nakano, N. Sago, M. Sasaki, Phys. Rev. D 68, 124003 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  92. A. Ori, Phys. Rev. D 67, 124010 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  93. A.C. Ottewill, B. Wardell, Phys. Rev. D 77, 104002 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  94. A.C. Ottewill, B. Wardell, Phys. Rev. D 79, 024031 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  95. E. Pazos-Avalos, C.O. Lousto, Phys. Rev. D 72, 084022 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  96. M.J. Pfenning, E. Poisson, Phys. Rev. D 65, 084001 (2002)

    Article  ADS  Google Scholar 

  97. E. Poisson, Living Rev. Rel. 7, URL: http://www.livingreviews.org/lrr-2004-6

  98. A. Pound, E. Poisson, B.G. Nickel, Phys. Rev. D 72, 124001 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  99. A. Pound, E. Poisson, Phys. Rev. D 77, 044012 (2008)

    Article  ADS  Google Scholar 

  100. A. Pound, E. Poisson, Phys. Rev. D 77, 044013 (2008)

    Article  ADS  Google Scholar 

  101. L. Price, Private communication

    Google Scholar 

  102. T.C. Quinn, Phys. Rev. D 62, 064029 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  103. T.C. Quinn, R.M. Wald, Phys. Rev. D 56, 3381 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  104. T. Regge, J.A. Wheeler, Phys. Rev. 108, 1063 (1957)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  105. A.G. Smith, C.M. Will, Phys. Rev. D 22, 1276 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  106. N. Sago, H. Nakano, M. Sasaki, Phys. Rev. D 67, 104017 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  107. N. Sago, T. Tanaka, W. Hikida, H. Nakano, Prog. Theor. Phys. 114, 509 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  108. N. Sago, T. Tanaka, W. Hikida, K. Ganz, H. Nakano, Prog. Theor. Phys. 115, 873 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  109. N. Sago, L. Barack, S. Detweiler, Phys. Rev. D 78, 124024 (2008)

    Article  ADS  Google Scholar 

  110. C.F. Sopuerta, P. Laguna, Phys. Rev. D 73, 044028 (2006)

    Article  ADS  Google Scholar 

  111. C.F. Sopuerta, P. Sun, P. Laguna, J. Xu, Class. Q. Grav. 23, 251 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  112. P.A. Sundararajan, G. Khanna, S.A. Hughes, Phys. Rev. D 76, 104005 (2007)

    Article  ADS  Google Scholar 

  113. P.A. Sundararajan, G. Khanna, S.A. Hughes, S. Drasco, Phys. Rev. D 78, 024022 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  114. S.A. Teukolsky, Phys. Rev. Lett. 29, 1114 (1972)

    Article  ADS  Google Scholar 

  115. J. Thornburg, arXiv:0909.0036v3 [gr-qc] (2010); arXiv:1006.3788v1 [gr-qc] (2010)

    Google Scholar 

  116. I. Vega, S. Detweiler, Phys. Rev. D 77, 084008 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  117. R.M. Wald, Phys. Rev. Lett. 41, 203 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  118. R.M. Wald, General Relativity (Chicago Press University, Chicago, 1984)

    MATH  Google Scholar 

  119. N. Warburton, L. Barack, Phys. Rev. D 81, 084039 (2010)

    Article  ADS  Google Scholar 

  120. A.G. Wiseman, Phys. Rev. D 61, 084014 (2000)

    Article  ADS  Google Scholar 

  121. F.J. Zerilli, J. Math. Phys. 11, 2203 (1970)

    Article  MathSciNet  ADS  Google Scholar 

  122. F.J. Zerilli, Phys. Rev. D 2, 2141 (1970)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from PPARC/STFC through grant number PP/D001110/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leor Barack .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Barack, L. (2009). Computational Methods for the Self-Force in Black Hole Spacetimes. In: Blanchet, L., Spallicci, A., Whiting, B. (eds) Mass and Motion in General Relativity. Fundamental Theories of Physics, vol 162. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3015-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-3015-3_12

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-3014-6

  • Online ISBN: 978-90-481-3015-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics