Skip to main content

Structural Approaches on the Toughness in Double Network Hydrogels

  • Conference paper
Chemomechanical Instabilities in Responsive Materials

Abstract

Most hydrogels are mechanically too weak to be used as any load bearing devices. We have overcome this problem by synthesizing hydrogels with a double network (DN) structure. Despite the presence of 90% water in their composition, these tough gels exhibit a fracture stress of 170 kg/cm2, similar to that of cartilage. The relation between their mechanical strength and structure for a wide range of conditions should be analyzed to apprehend the origin of the toughness of the DN-gels. We recently reported some experi- mental results obtained by dynamic light scattering and small angle neutron scattering. Some new experimental results obtained by neutron scattering in both deformed and undeformed conditions provided for a new under- standing of the origin of toughness. We review the studies on the structure of DN-gels towards understanding of the toughness origin. Studies on DN-gels for biomedical applications are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. P. Gong, T. Kurokawa, T. Narita, G. Kagata, Y. Osada, G. Nishimura and M. Kinjo, J. Am. Chem. Soc. 123, 5582 (2001).

    Article  Google Scholar 

  2. J. P. Gong, M. Higa, Y. Iwasaki, Y. Katsuyama and Y. Osada, J. Phys. Chem. B 101, 5487 (1997).

    Article  Google Scholar 

  3. J. P. Gong and Y. Osada, J. Chem. Phys. 109, 8062 (1998).

    Article  ADS  Google Scholar 

  4. J. P. Gong, Y. Iwasaki, Y. Osada, K. Kurihara and Y. Hamai, J. Phys. Chem. B 103, 6001 (1999).

    Article  Google Scholar 

  5. J. P. Gong, Y. Iwasaki and Y. Osada, J. Phys. Chem. B 104, 3423 (2000).

    Article  Google Scholar 

  6. Y. Osada and J. P. Gong, Adv. Mater. 15, 1155 (2003).

    Article  Google Scholar 

  7. Y. Tanaka, J. P. Gong and Y. Osada, Prog. Polym. Sci. 30, 1 (2005).

    Article  Google Scholar 

  8. Y. M. Chen, J. P. Gong and Y. Osada, in Macromolecular Engineering: Precise Synthesis Materials Properties, Applications(K. Matyjaszewski, Y. Gnanou, L. Leibler, Eds., Wiley-VCH, Weinheim, 2007), pp. 2689–2717.

    Google Scholar 

  9. Y. Tanaka, R. Kuwabara, Y-H. Na, T. Kurokawa, J. P. Gong and Y. Osada, J. Phys. Chem. B 109, 11559 (2005).

    Article  Google Scholar 

  10. Y-H. Na, Y. Katsuyama, R. Kuwabara, T. Kurokawa, Y. Osada, M. Shibayama and J. P. Gong, e-J. Surf. Sci. Nanotech. 3, 8 (2005).

    Article  Google Scholar 

  11. Y-H. Na, T. Kurokawa, Y. Katsuyama, H. Tsukeshiba, J. P. Gong, Y. Osada, S. Okabe and M. Shibayama, Macromolecules 37, 5370 (2004).

    Article  ADS  Google Scholar 

  12. M. Huang, H. Furukawa, Y. Tanakana, T. Nakajima, Y. Osada and J. P. Gong, Macro- molecules 40, 6658 (2007).

    ADS  Google Scholar 

  13. T. Norisuye, M. Takeda and M. Shibayama, Macromolecules 31, 5316 (1998).

    Article  ADS  Google Scholar 

  14. M. Takeda, T. Norisuye and M. Shibayama, Macromolecules 33, 2909 (2000).

    Article  ADS  Google Scholar 

  15. G. J. Lake and A. G. Thomas, Proc. R. Soc. London 300, 108 (1967).

    Article  ADS  Google Scholar 

  16. P. G. de Gennes, Langmuir 12, 4497 (1996).

    Article  Google Scholar 

  17. J. Bastide and L. Leibler, Macromolecules 21, 2407 (1988).

    Article  Google Scholar 

  18. H. Tsukeshiba, M. Huang, N-H. Na, T. Kurokawa, R. Kuwabara, Y. Tanaka, H. Furukawa, Y. Osada and J. P. Gong, J. Phys. Chem. B 109, 16304 (2005).

    Article  Google Scholar 

  19. W. M. Kulicke, R. Kniewske and J. Klein, Prog. Polym. Sci. 8, 373 (1982).

    Article  Google Scholar 

  20. Y-H, Na, Y. Tanaka, Y. Kawauchi, H. Furukawa, T. Sumiyoshi, J. P. Gong and Y. Osada, Macromolecules 39, 4641 (2006).

    Article  ADS  Google Scholar 

  21. H. Brown, Macromolecules 40, 3815 (2007).

    Article  ADS  Google Scholar 

  22. Y. Tanaka, Europhys. Lett. 78, 56005 (2007).

    Article  ADS  Google Scholar 

  23. C. J. Glinka, J. G. Barker, B. Hammouda, S. Krueger, J. Moyer and W. J. Orts, J. Appl. Cryst. 31, 430 (1998).

    Article  Google Scholar 

  24. J. G. Barker, C. J. Glinka, J. J. Moyer, M-H. Kim, A. R. Drews and M. Agamalian. J Appl. Cryst. 38, 1004 (2005).

    Article  Google Scholar 

  25. T. Tominaga, V. R. Tirumala, E. K. Lin, J. P. Gong, H. Furukawa, Y. Osada and W-L. Wu, Polymer 48, 7449 (2007).

    Article  Google Scholar 

  26. S. Sukhishvili, E. Kharlempieva and V. Izumrudov, Macromolecules 39, 8873 (2006).

    Article  ADS  Google Scholar 

  27. T. Tominaga, V. R. Tirumala, S. Lee, E. K. Lin, J. P. Gong and W-L. Wu, J. Phys. Chem. B 112, 3903 (2008).

    Article  Google Scholar 

  28. M. Zeghal and L. Auvray, Europhys. Lett. 45, 482 (1999).

    Article  ADS  Google Scholar 

  29. Y. D. Zaroslov, V. I. Gordeliy, A. I. Kuklin, A. H. Islamov, O. E. Philippova, A. R. Khokhlov and G. Wegner, Macromolecules 35, 4466 (2002).

    Article  ADS  Google Scholar 

  30. O. E. Philippova, Y. D. Zaroslov, A. R. Khokhlov and G. Wegner, Macromol. Symp. 200, 45 (2003).

    Article  Google Scholar 

  31. S. Durmaz and O. Okay, Polymer 41, 3693 (2000).

    Article  Google Scholar 

  32. O. Okay and S. Durmaz, Polymer 43, 1215 (2002).

    Article  Google Scholar 

  33. A. Ozdogan and O. Okay, Polym. Bull. 54, 435 (2005).

    Article  Google Scholar 

  34. K. B. Zeldovich and A. R. Khokhlov, Macromolecules 32, 3488 (1999).

    Article  ADS  Google Scholar 

  35. C. W. Frank et al., International Patent Application 116137 (2006).

    Google Scholar 

  36. X. Yu, A. Tanaka, K. Tanaka and T. Tanaka, J. Chem. Phys. 97, 7805 (1992).

    Article  ADS  Google Scholar 

  37. V. R. Tirumala, T. Tominaga, S. Lee, P. D. Butler, E. K. Lin, J. P. Gong and W-L. Wu, J. Phys. Chem. B 112, 8024 (2008).

    Article  Google Scholar 

  38. Y. Okumura and K. Ito, Adv. Mater. 13, 485 (2001).

    Article  Google Scholar 

  39. K. Haraguchi and T. Takehisa, Adv. Mater. 14, 1120 (2002).

    Article  Google Scholar 

  40. S. Miyazaki, T. Karino, H. Endo, K. Haraguchi and M. Shibayama, Macromolecules 39, 8112 (2006); Y. Shinohara, K. Kayashima, Y. Okumura, C. Zhao, K. Ito and Y. Amemiya, Macromolecules 39, 7386 (2006).

    Article  ADS  Google Scholar 

  41. A. Kelly and W. R. Tyson, J. Mech. Phys. Solids 13, 329 (1965).

    Article  ADS  Google Scholar 

  42. A. T. DiBenedeto, Pure Appl. Chem. 57, 1659 (1985).

    Article  Google Scholar 

  43. W. A. Hodge, R. S. Fijian, K. L. Carlson, R. G. Burgess, W. H. Harris and R. W. Mann, Proc. Natl. Acad. Sci. USA 83, 2879 (1986).

    Article  ADS  Google Scholar 

  44. J. P. Gong, Soft Matter 7, 544 (2006).

    Article  Google Scholar 

  45. K. Yasuda, J. P. Gong, Y. Katsuyama, A. Nakayama, Y. Tanabe, E. Kondo, M. Ueno and Y. Osada, Biomaterials 26, 4468 (2005).

    Article  Google Scholar 

  46. C. Azuma, K. Yasuda, Y. Tanabe, H. Taniguro, F. Kanaya, A. Nakayama, Y. M. Chen, J. P. Gong and Y. Osada, J. Biomed. Mat. Res A 81, 373 (2006).

    Google Scholar 

  47. Y. Tanabe, K. Yasuda, C. Azuma, H. Taniguro, S. Onodera, A. Suzuki, Y. M. Chen, J. P. Gong and Y. Osada, J. Mat. Sci. Mat. Med. 19, 1379 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this paper

Cite this paper

Tominaga, T., Osada, Y., Gong, J.P. (2009). Structural Approaches on the Toughness in Double Network Hydrogels. In: Borckmans, P., De Kepper, P., Khokhlov, A.R., Métens, S. (eds) Chemomechanical Instabilities in Responsive Materials. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2993-5_5

Download citation

Publish with us

Policies and ethics