Skip to main content

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 20))

Abstract

Significant attempts have been made toward the intuitive understanding of nonclassical Franck–Condon factors that govern many important molecular processes from radiationless transitions to electronic spectroscopy. In the classical picture, i.e., Condon approximation, nuclear motion is assumed frozen throughout the duration of electronic transitions. However, as is demonstrated in this chapter, position and momentum jumps can compete in determining the Franck–Condon factor such that the conventional propensity rule can be misleading. We present a new method in this chapter where both position and momenta are simultaneously altered to achieve an improved description of nonadiabatic events. This optimal spawning procedure reduces to simpler approaches such as the strict momentum jump in appropriate limits, but is sufficiently flexible to describe cases where both position and momentum adjustments are important.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.J. Heller, D. Beck, Chem. Phys. Lett. 202, 350 (1993)

    Article  CAS  Google Scholar 

  2. T.J. Martínez, Acc. Chem. Res. 39, 119 (2006)

    Article  Google Scholar 

  3. D.R. Yarkony, J. Chem. Phys. 114, 2601 (2001)

    Article  CAS  Google Scholar 

  4. M. Ben-Nun, F. Molnar, K. Schulten, T.J. Martínez, Proc. Natl. Acad. Sci. 99, 1769 (2002)

    Article  CAS  Google Scholar 

  5. D.R. Yarkony, Acc. Chem. Res. 31, 511 (1998)

    Article  CAS  Google Scholar 

  6. M.A. Robb, F. Bernardi, M. Olivucci, Pure Appl. Chem. 67, 783 (1995)

    Article  CAS  Google Scholar 

  7. B.G. Levine, T.J. Martínez, Annu. Rev. Phys. Chem. 58, 613 (2007)

    Article  CAS  Google Scholar 

  8. J. Michl, Top. Curr. Chem. 46, 1 (1974)

    CAS  Google Scholar 

  9. L. Salem, J. Am. Chem. Soc. 97, 479 (1975)

    Article  CAS  Google Scholar 

  10. J.C. Tully, R.K. Preston, J. Chem. Phys. 55, 562 (1971)

    Article  CAS  Google Scholar 

  11. R.K. Preston, J.C. Tully, J. Chem. Phys. 54, 4297 (1971)

    Article  CAS  Google Scholar 

  12. J.C. Tully, J. Chem. Phys. 93, 1061 (1990)

    Article  CAS  Google Scholar 

  13. C. Wittig, J. Phys. Chem. B 109, 8428 (2005)

    Article  CAS  Google Scholar 

  14. E.E. Nikitin, Theory of Elementary Atomic and Molecular Processes in Gases (Clarendon, Oxford, 1974)

    Google Scholar 

  15. M. Ben-Nun, T.J. Martínez, Adv. Chem. Phys. 121, 439 (2002)

    Article  CAS  Google Scholar 

  16. G.C. Schatz, M.A. Ratner, Quantum Mechanics in Chemistry (Prentice Hall, Englewood Cliffs, 1993)

    Google Scholar 

  17. M.F. Herman, J. Chem. Phys. 81, 754 (1984)

    Article  CAS  Google Scholar 

  18. P.V. Parandekar, J.C. Tully, J. Chem. Theory Comput. 2, 229 (2006)

    Article  CAS  Google Scholar 

  19. P.V. Parandekar, J.C. Tully, J. Chem. Phys. 122, 094102 (2005)

    Article  Google Scholar 

  20. A.W. Jasper, D.G. Truhlar, Chem. Phys. Lett. 369, 60 (2003)

    Article  CAS  Google Scholar 

  21. A.W. Jasper, S.N. Stechmann, D.G. Truhlar, J. Chem. Phys. 116, 5424 (2002)

    Article  CAS  Google Scholar 

  22. J. Fang, S. Hammes-Schiffer, J. Phys. Chem. A 103, 9399 (1999)

    Article  CAS  Google Scholar 

  23. U. Muller, G. Stock, J. Chem. Phys. 107, 6230 (1997)

    Article  CAS  Google Scholar 

  24. E.J. Heller, B. Segev, A.V. Sergeev, J. Phys. Chem. B 106, 8471 (2002)

    Article  CAS  Google Scholar 

  25. A. Ferretti, G. Granucci, M. Persico, G. Villani, J. Chem. Phys. 104, 5517 (1996)

    Article  CAS  Google Scholar 

  26. An “optimal” spawning algorithm for adaptive basis set expansion in nonadiabatic dynamics, S. Yang, J.D. Coe, B. Kaduk, T.J. Martínez, J. Chem. Phys. 130, 134113 (2009)

    Google Scholar 

  27. D. Kosloff, R. Kosloff, J. Comput. Phys. 52, 35 (1983)

    Article  CAS  Google Scholar 

  28. R. Kosloff, Annu. Rev. Phys. Chem. 45, 145 (1994)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandy Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Yang, S., Martinez, T.J. (2009). Nonclassical Phase Space Jumps and Optimal Spawning. In: Piecuch, P., Maruani, J., Delgado-Barrio, G., Wilson, S. (eds) Advances in the Theory of Atomic and Molecular Systems. Progress in Theoretical Chemistry and Physics, vol 20. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2985-0_2

Download citation

Publish with us

Policies and ethics