Skip to main content

On the Electronic Spectra of a Molecular Bridge Under Non-Equilibrium Electric Potential Conditions

  • Chapter
Advances in the Theory of Atomic and Molecular Systems

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 20))

Abstract

The linear response of the electronic density of a molecular based junction under potential bias conditions to a probing polarizing perturbation is calculated to model the electronic spectra. It is shown that steady flux conditions lead to dramatic effects on the electronic spectra of the confined system. The non-equilibrium conditions enable electronic transitions that are otherwise forbidden. The implemented methodology uses the Keldysh contour formalism to express the electronic equations of motion. The related time correlation Green Functions are then solved for in the full frequency representation and at the linear response level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Xue, S. Datta, M.A. Ratner, J. Chem. Phys. 115, 4292 (2001)

    Article  CAS  Google Scholar 

  2. P.S. Damle, A.W. Ghosh, S. Datta, Phys. Rev. B 64, 201403(R) (2001)

    Article  Google Scholar 

  3. J. Taylor, H. Guo, J. Wang, Phys. Rev. B 63, 245407 (2001)

    Article  Google Scholar 

  4. Y. Xue, S. Datta, M.A. Ratner, Chem. Phys 281, 151 (2002)

    Article  CAS  Google Scholar 

  5. P. Damle, A.W. Ghosh, F. Zahid, S. Datta, Chem. Phys. 171–187, 225 (2002)

    Google Scholar 

  6. Y. Xue, M.A. Ratner, Phys. Rev. B 68, 115406 (2003)

    Article  Google Scholar 

  7. M. Brandbyge, J.L. Mozos, P. Ordejon, J. Taylor, K. Stokbro, Phys. Rev. B 65, 165401 (2002)

    Article  Google Scholar 

  8. M. Galperin, A. Nitzan, Ann. N.Y. Acad. Sci. 1006, 48 (2003)

    Article  CAS  Google Scholar 

  9. L.P. Kouwenhoven, A.T. Johnson, N.C. van der Vaart, C.J.P.M. Harmans, C.T. Foxon, Phys. Rev. Lett. 67(12), 1626 (1991).

    Article  CAS  Google Scholar 

  10. L.P. Kouwenhoven, S. Jauhar, K. McCormick, D. Dixon, P.L. McEuen, Y.V. Nazarov, N.C. van der Vaart, C.T. Foxon, Phys. Rev. B 50, 2019 (1994)

    Article  CAS  Google Scholar 

  11. B.J. Keay, S. Zeuner, S.J. Allen, K.D. Maranowski, A.C. Gossard, U. Bhattacharya, M.J.W. Rodwell, Phys. Rev. Lett. 75(22), 4102 (1995).

    Article  CAS  Google Scholar 

  12. T.H. Oosterkamp, L.P. Kouwenhoven, A.E.A. Koolen, N.C. van der Vaart, C.J.P.M. Harmans, Phys. Rev. Lett. 78(8), 1536 (1997)

    Article  CAS  Google Scholar 

  13. R. López, R. Aguado, G. Platero, C. Tejedor, Phys. Rev. Lett. 81, 4688 (1998)

    Article  Google Scholar 

  14. T.H. Oosterkamp, T. Fujisawa, W.G. van der Wiel, K. Ishibashi, R.V. Hijman, S. Tarucha, L.P. Kouwenhoven, Nature 395, 873 (1998)

    Article  CAS  Google Scholar 

  15. P. Nordlander, M. Pustilnik, Y. Meir, N.S. Wingreen, D.C. Langreth, Phys. Rev. Lett. 83, 808 (1999)

    Article  CAS  Google Scholar 

  16. L. DiCarlo, C.M. Marcus, J.S. Harris, Phys. Rev. Lett. 91(24), 246804 (2003)

    Article  CAS  Google Scholar 

  17. G. Platero, R. Aguado, Phys. Rep. 395, 1 (2004)

    Article  Google Scholar 

  18. M.G. Vavilov, L. DiCarlo, C.M. Marcus, Phys. Rev. B 71(24), 241309 (2005)

    Article  Google Scholar 

  19. P.J. Leek, M.R. Buitelaar, V.I. Talyanskii, C.G. Smith, D. Anderson, G.A.C. Jones, J. Wei, D.H. Cobden, Phys. Rev. Lett. 95, 256802 (2005)

    Google Scholar 

  20. B.H. Wu, J.C. Cao, Phys. Rev. B 73(20), 205318 (2006)

    Article  Google Scholar 

  21. T.H. Stoof, Y.V. Nazarov, Phys. Rev. B 53, 1050 (1996)

    Article  CAS  Google Scholar 

  22. C.A. Stafford, N.S. Wingreen, Phys. Rev. Lett. 76, 1916 (1996)

    Article  CAS  Google Scholar 

  23. P. Brune, C. Bruder, H. Schoeller, Phys. Rev. B 56, 4730 (1997)

    Article  CAS  Google Scholar 

  24. P.W. Brouwer, Phys. Rev. B 58(16), R10135 (1998)

    Article  CAS  Google Scholar 

  25. M. Switkes, C.M. Marcus, K. Campman, A.C. Gossard, Science 283, 1905 (1999)

    Article  CAS  Google Scholar 

  26. F. Zhou, B. Spivak, B. Altshuler, Phys. Rev. Lett. 82(3), 608 (1999)

    Article  CAS  Google Scholar 

  27. P.W. Brouwer, Phys. Rev. B 63(12), 121303 (2001)

    Article  Google Scholar 

  28. B. Wang, J. Wang, H. Guo, Phys. Rev. B 65(7), 073306 (2002)

    Article  Google Scholar 

  29. M. Moskalets, M. Büttiker, Phys. Rev. B 69, 205316 (2004)

    Article  Google Scholar 

  30. L. Arrachea, Phys. Rev. B 72, 121306 (2005)

    Article  Google Scholar 

  31. L. Arrachea, Phys. Rev. B 72, 125349 (2005)

    Article  Google Scholar 

  32. L.E.F.F. Torres, Phys. Rev. B 72, 245339 (2005)

    Article  Google Scholar 

  33. S. Kohler, J. Lehmann, P. Hanggi, Phys. Rep. 406, 379 (2005)

    Article  CAS  Google Scholar 

  34. A. Agarwal, D. Sen, Phys. Rev. B 76, 235316 (2007)

    Article  Google Scholar 

  35. L. Arrachea, C. Naon, M. Salvay, Phys. Rev. B 76, 165401 (2007)

    Article  Google Scholar 

  36. G. Stefanucci, S. Kurth, A. Rubio, E.K.U. Gross, Phys. Rev. B 77, 075339 (2008)

    Article  Google Scholar 

  37. A.M. Nowak, R.L. McCreery, J. Am. Chem. Soc. 126, 16621 (2004)

    Google Scholar 

  38. A.M. Nowak, R.L. McCreery, Anal. Chem. 76, 1089 (2004)

    Article  CAS  Google Scholar 

  39. A.P. Bonifas, R.L. McCreery, Chem. Mater. 20, 3849 (2008)

    Article  CAS  Google Scholar 

  40. D.R. Ward, N.J. Halas, J.W. Ciszek, J.M. Tour, Y. Wu, P. Nordlander, D. Natelson, Nano. Lett. 8, 919 (2008)

    Article  CAS  Google Scholar 

  41. D.R. Ward, G.D. Scott, Z.K. Keane, N.J. Halas, D. Natelson, J. Phys.-Cond. Mat. 20, 374118 (2008)

    Article  Google Scholar 

  42. G. Stefanucci, C.O. Almbladh, Phys. Rev. B 69, 195318 (2004)

    Article  Google Scholar 

  43. S. Kurth, G. Stefanucci, C.O. Almbladh, E.K.U. Rubio, A. Gross, Phys. Rev. B 72, 035308 (2005)

    Article  Google Scholar 

  44. J. Maciejko, J. Wang, H. Guo, Phys. Rev. B 74, 085324 (2006)

    Article  Google Scholar 

  45. A.P. Jauho, N.S. Wingreen, Y. Meir, Phys. Rev. B 50, 5528 (1994)

    Article  CAS  Google Scholar 

  46. R. Baer, D. Neuhauser, Int. J. Quantum Chem. 91, 524 (2003)

    Article  CAS  Google Scholar 

  47. R. Baer, T. Seidman, S. Ilani, D. Neuhauser, J. Chem. Phys. 120, 3387 (2004)

    Google Scholar 

  48. R. Baer, D. Neuhauser, J. Chem. Phys. 121, 9803 (2004)

    Article  CAS  Google Scholar 

  49. D. Neuhauser, R. Baer, J. Chem. Phys. 123, 204105 (2005)

    Article  Google Scholar 

  50. N. Bushong, N. Sai, M. Di Ventra, Nano. Lett. 5, 2569 (2005)

    Article  CAS  Google Scholar 

  51. K. Burke, R. Car, R. Gebauer, Phys. Rev. Lett. 94, 146803 (2005)

    Article  Google Scholar 

  52. N. Sai, M. Zwolak, G. Vignale, M. Di Ventra, Phys. Rev. Lett. 94, 186810 (2005)

    Article  Google Scholar 

  53. C.L. Cheng, J.S. Evans, T. Van Voorhis, Phys. Rev. B 74, 155112 (2006)

    Article  Google Scholar 

  54. X. Qian, J. Ju Li, X. Lin, S. Yip, Phys. Rev. B 73, 035408 (2006)

    Article  Google Scholar 

  55. J. Lehmann, S. Kohler, P. Hänggi, A. Nitzan, Phys. Rev. Lett. 88, 228305 (2002)

    Article  Google Scholar 

  56. J. Lehmann, S. Kohler, P. Hanggi, A. Nitzan, J. Chem. Phys. 118, 3283 (2003)

    Article  CAS  Google Scholar 

  57. S. Camalet, J. Lehmann, S. Kohler, P. Hänggi, Phys. Rev. Lett. 90, 210602 (2003)

    Article  Google Scholar 

  58. M. Moskalets, M. Büttiker, Phys. Rev. B 69, 205316 (2004)

    Article  Google Scholar 

  59. S. Camalet, S. Kohler, P. Hänggi, Phys. Rev. B 70, 155326 (2004)

    Article  Google Scholar 

  60. L. Arrachea, Phys. Rev. B 72, 125349 (2005)

    Article  Google Scholar 

  61. L. Arrachea, M. Moskalets, Phys. Rev. B 74, 245322 (2006)

    Article  Google Scholar 

  62. A. Prociuk, B.D. Dunietz, Phys. Rev. B 78, 165112 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Prociuk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Prociuk, A., Dunietz, B.D. (2009). On the Electronic Spectra of a Molecular Bridge Under Non-Equilibrium Electric Potential Conditions. In: Piecuch, P., Maruani, J., Delgado-Barrio, G., Wilson, S. (eds) Advances in the Theory of Atomic and Molecular Systems. Progress in Theoretical Chemistry and Physics, vol 20. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2985-0_13

Download citation

Publish with us

Policies and ethics