Skip to main content

Mycobacterial Heat Shock Protein 60s in the Induction and Regulation of Infectious Disease

  • Chapter
  • First Online:
Prokaryotic and Eukaryotic Heat Shock Proteins in Infectious Disease

Part of the book series: Heat Shock Proteins ((HESP,volume 4))

  • 626 Accesses

Abstract

Mycobacterium tuberculosis expresses several heat shock protein 60s, also called chaperonin 60 proteins. As well as being protein folding molecules, the chaperonin 60 proteins have implications in bacterial diseases. Here we discuss the effect of the mycobacterial chaperonins in the regulation of tuberculosis. The disease is characterized by the formation of granulomas, which are necessary for completing the life cycle of bacteria. The mycobacterial chaperonins are released into the cellular environment and are potent pro-inflammatory inducers. An M. tuberculosis mutant lacking the chaperonin 60.1 is not capable of inducing the granulomas in vivo. In vitro data also suggest an inhibitory role of mycobacterial chaperonins. Taken together, the mycobacterial chaperonin 60 proteins may control the immune responses during the tuberculosis infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goyal K, Qamra R, Mande SC. Multiple gene duplication and rapid evolution in the groEL gene: functional implications. J Mol Evol. 2006 63:781–7.

    Article  PubMed  CAS  Google Scholar 

  2. Lewthwaite J, George R, Lund PA, Poole S, Tormay P, Sharp L, et al. Rhizobium leguminosarum chaperonin 60.3, but not chaperonin 60.1, induces cytokine production by human monocytes: activity is dependent on interaction with cell surface CD14. Cell Stress Chaperones. 2002 7:130–6.

    Article  PubMed  CAS  Google Scholar 

  3. Gould PS, Burgar HR, Lund PA. Homologous cpn60 genes in Rhizobium leguminosarum are not functionally equivalent. Cell Stress Chaperones. 2007 12:123–31.

    Article  PubMed  CAS  Google Scholar 

  4. Hu Y, Henderson B, Lund PA, Tormay P, Ahmed MT, Gurcha SS, et al. A Mycobacterium tuberculosis mutant lacking the groEL homologue cpn60.1 is viable but fails to induce an inflammatory response in animal models of infection. Infect Immun. 2008 76(4): 1535–46.

    Google Scholar 

  5. Kong TH, Coates AR, Butcher PD, Hickman CJ, Shinnick TM. Mycobacterium tuberculosis expresses two chaperonin-60 homologs. Proc Natl Acad Sci USA. 1993 90:2608–12.

    Article  PubMed  CAS  Google Scholar 

  6. Fayet O, Ziegelhoffer T, Georgopoulos C. The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures. J Bacteriol. 1989 171:1379–85.

    PubMed  CAS  Google Scholar 

  7. Houry WA, Frishman D, Eckerskorn C, Lottspeich F, Hartl FU. Identification of in vivo substrates of the chaperonin GroEL. Nature. 1999 402(6758):147–54.

    Article  PubMed  CAS  Google Scholar 

  8. Qamra R, Mande SC. Crystal structure of the 65-kilodalton heat shock protein, chaperonin 60.2, of Mycobacterium tuberculosis. J Bacteriol. 2004 186:8105–13.

    Article  PubMed  CAS  Google Scholar 

  9. Ernst JD, Trevejo-Nunez G, Banaiee N. Genomics and the evolution, pathogenesis, and diagnosis of tuberculosis. J Clin Invest. 2007 117:1738–45.

    Article  PubMed  CAS  Google Scholar 

  10. Cosma CL, Sherman DR, Ramakrishnan L. The secret lives of the pathogenic mycobacteria. Annu Rev Microbiol. 2003 57:641–76.

    Article  PubMed  CAS  Google Scholar 

  11. WHO. Tuberculosis; Fact sheet no. 104. 2007 cited February 2008.; Available from: http://www.who.int/mediacentre/factsheets/fs104/en/print.html.

  12. WHO. Global tuberculosis control: Surveillance, Planning, Financing. Geneva, Switzerland; 2007.

    Google Scholar 

  13. Wolf AJ, Linas B, Trevejo-Nunez GJ, Kincaid E, Tamura T, Takatsu K, et al. Mycobacterium tuberculosis infects dendritic cells with high frequency and impairs their function in vivo. J Immunol. 2007 179:2509–19.

    PubMed  CAS  Google Scholar 

  14. Wolf AJ, Desvignes L, Linas B, Banaiee N, Tamura T, Takatsu K, et al. Initiation of the adaptive immune response to Mycobacterium tuberculosis depends on antigen production in the local lymph node, not the lungs. J Exp Med. 2008 205:105–15.

    Article  PubMed  CAS  Google Scholar 

  15. Lay G, Poquet Y, Salek-Peyron P, Puissegur MP, Botanch C, Bon H, et al. Langhans giant cells from M. tuberculosis-induced human granulomas cannot mediate mycobacterial uptake. J Pathol. 2007 211:76–85.

    Article  PubMed  CAS  Google Scholar 

  16. Hu Y, Mangan JA, Dhillon J, Sole KM, Mitchison DA, Butcher PD, et al. Detection of mRNA transcripts and active transcription in persistent Mycobacterium tuberculosis induced by exposure to rifampin or pyrazinamide. J Bacteriol. 2000 182:6358–65.

    Article  PubMed  CAS  Google Scholar 

  17. Feng CG, Bean AG, Hooi H, Briscoe H, Britton WJ. Increase in gamma interferon-secreting CD8(+), as well as CD4(+), T cells in lungs following aerosol infection with Mycobacterium tuberculosis. Infect Immun. 1999 67:3242–7.

    PubMed  CAS  Google Scholar 

  18. Kaufmann SH. How can immunology contribute to the control of tuberculosis? Nat Rev Immunol. 2001 1:20–30.

    Article  PubMed  CAS  Google Scholar 

  19. Pais TF, Silva RA, Smedegaard B, Appelberg R, Andersen P. Analysis of T cells recruited during delayed-type hypersensitivity to purified protein derivative (PPD) versus challenge with tuberculosis infection. Immunology. 1998 95:69–75.

    Article  PubMed  CAS  Google Scholar 

  20. Flynn JL, Goldstein MM, Chan J, Triebold KJ, Pfeffer K, Lowenstein CJ, et al. Tumor necrosis factor-alpha is required in the protective immune response against Mycobacterium tuberculosis in mice. Immunity. 1995 2:561–72.

    Article  PubMed  CAS  Google Scholar 

  21. Kindler V, Sappino AP, Grau GE, Piguet PF, Vassalli P. The inducing role of tumor necrosis factor in the development of bactericidal granulomas during BCG infection. Cell. 1989 56:731–40.

    Article  PubMed  CAS  Google Scholar 

  22. Antas PR, Cardoso FL, Pereira KC, Franken KL, Cunha KS, Klatser P, et al. T cell immune responses to mycobacterial antigens in Brazilian tuberculosis patients and controls. Trans R Soc Trop Med Hyg. 2005 99:699–707.

    Article  PubMed  CAS  Google Scholar 

  23. Mutis T, Cornelisse YE, Ottenhoff TH. Mycobacteria induce CD4+ T cells that are cytotoxic and display Th1-like cytokine secretion profile: heterogeneity in cytotoxic activity and cytokine secretion levels. Eur J Immunol. 1993 23:2189–95.

    Article  PubMed  CAS  Google Scholar 

  24. Coates AR, Hewitt J, Allen BW, Ivanyi J, Mitchison DA. Antigenic diversity of Mycobacterium tuberculosis and Mycobacterium bovis detected by means of monoclonal antibodies. Lancet. 1981 2(8239):167–9.

    Article  PubMed  CAS  Google Scholar 

  25. Harboe M, Coates AR, Hewitt J. Characterization of the specificity of monoclonal antibodies against Mycobacterium tuberculosis by crossed immunoelectrophoresis. Scand J Immunol. 1985 22:93–8.

    Article  PubMed  CAS  Google Scholar 

  26. Young DB, Ivanyi J, Cox JH, Lamb JR. The 65 kDa antigen of mycobacteria - a common bacterial protein? Immunol Today. 1987 8(7–8):215–9.

    Article  CAS  Google Scholar 

  27. Hewitt J, Coates AR, Mitchison DA, Ivanyi J. The use of murine monoclonal antibodies without purification of antigen in the serodiagnosis of tuberculosis. J Immunol Methods. 1982 55:205–11.

    Article  PubMed  CAS  Google Scholar 

  28. Sethna KB, Mistry NF, Dholakia Y, Antia NH, Harboe M. Longitudinal trends in serum levels of mycobacterial secretory (30 kD) and cytoplasmic (65 kD) antigens during chemotherapy of pulmonary tuberculosis patients. Scand J Infect Dis. 1998 30(4):363–9.

    Article  PubMed  CAS  Google Scholar 

  29. Bulut Y, Michelsen KS, Hayrapetian L, Naiki Y, Spallek R, Singh M, et al. Mycobacterium tuberculosis heat shock proteins use diverse Toll-like receptor pathways to activate pro-inflammatory signals. J Biol Chem. 2005 280:20961–7.

    Article  PubMed  CAS  Google Scholar 

  30. Gobert AP, Bambou JC, Werts C, Balloy V, Chignard M, Moran AP, et al. Helicobacter pylori heat shock protein 60 mediates interleukin-6 production by macrophages via a toll-like receptor (TLR)-2-, TLR-4-, and myeloid differentiation factor 88-independent mechanism. J Biol Chem. 2004 279:245–50.

    Article  PubMed  Google Scholar 

  31. Argueta JG, Shiota S, Yamaguchi N, Masuhiro Y, Hanazawa S. Induction of Porphyromonas gingivalis GroEL signaling via binding to Toll-like receptors 2 and 4. Oral Microbiol Immunol. 2006 21:245–51.

    Article  PubMed  CAS  Google Scholar 

  32. Fremond CM, Yeremeev V, Nicolle DM, Jacobs M, Quesniaux VF, Ryffel B. Fatal Mycobacterium tuberculosis infection despite adaptive immune response in the absence of MyD88. J Clin Invest. 2004 114:1790–9.

    PubMed  CAS  Google Scholar 

  33. Underhill DM, Ozinsky A, Smith KD, Aderem A. Toll-like receptor-2 mediates mycobacteria-induced proinflammatory signaling in macrophages. Proc Natl Acad Sci USA. 1999 96:14459–63.

    Article  PubMed  CAS  Google Scholar 

  34. Flynn JL. Immunology of tuberculosis and implications in vaccine development. Tuberculosis (Edinb). 2004 84(1–2):93–101.

    Article  Google Scholar 

  35. Retzlaff C, Yamamoto Y, Hoffman PS, Friedman H, Klein TW. Bacterial heat shock proteins directly induce cytokine mRNA and interleukin-1 secretion in macrophage cultures. Infect Immun. 1994 62:5689–93.

    PubMed  CAS  Google Scholar 

  36. Ausiello CM, Fedele G, Palazzo R, Spensieri F, Ciervo A, Cassone A. 60-kDa heat shock protein of Chlamydia pneumoniae promotes a T helper type 1 immune response through IL-12/IL-23 production in monocyte-derived dendritic cells. Microbes Infect. 2006 8:714–20.

    Article  PubMed  CAS  Google Scholar 

  37. Takenaka R, Yokota K, Ayada K, Mizuno M, Zhao Y, Fujinami Y, et al. Helicobacter pylori heat-shock protein 60 induces inflammatory responses through the Toll-like receptor-triggered pathway in cultured human gastric epithelial cells. Microbiology. 2004 150(Pt 12):3913–22.

    Article  CAS  Google Scholar 

  38. Zhao Y, Yokota K, Ayada K, Yamamoto Y, Okada T, Shen L, et al. Helicobacter pylori heat-shock protein 60 induces interleukin-8 via a Toll-like receptor (TLR)2 and mitogen-activated protein (MAP) kinase pathway in human monocytes. J Med Microbiol. 2007 56:154–64.

    Article  PubMed  CAS  Google Scholar 

  39. Bulut Y, Faure E, Thomas L, Karahashi H, Michelsen KS, Equils O, et al. Chlamydial heat shock protein 60 activates macrophages and endothelial cells through Toll-like receptor 4 and MD2 in a MyD88-dependent pathway. J Immunol. 2002 168:1435–40.

    PubMed  CAS  Google Scholar 

  40. Maguire M, Poole S, Coates AR, Tormay P, Wheeler-Jones C, Henderson B. Comparative cell signalling activity of ultrapure recombinant chaperonin 60 proteins from prokaryotes and eukaryotes. Immunology. 2005 115:231–8.

    Article  PubMed  CAS  Google Scholar 

  41. Lewthwaite JC, Clarkin CE, Coates AR, Poole S, Lawrence RA, Wheeler-Jones CP, et al. Highly homologous Mycobacterium tuberculosis chaperonin 60 proteins with differential CD14 dependencies stimulate cytokine production by human monocytes through cooperative activation of p38 and ERK1/2 mitogen-activated protein kinases. Int Immunopharmacol. 2007 7:230–40.

    Article  PubMed  CAS  Google Scholar 

  42. Lewthwaite JC, Coates AR, Tormay P, Singh M, Mascagni P, Poole S, et al. Mycobacterium tuberculosis chaperonin 60.1 is a more potent cytokine stimulator than chaperonin 60.2 (Hsp 65) and contains a CD14-binding domain. Infect Immun. 2001 69:7349–55.

    Article  PubMed  CAS  Google Scholar 

  43. Tormay P, Coates AR, Henderson B. The intercellular signaling activity of the Mycobacterium tuberculosis chaperonin 60.1 protein resides in the equatorial domain. J Biol Chem. 2005 280:14272–7.

    Article  PubMed  CAS  Google Scholar 

  44. Zanin-Zhorov A, Tal G, Shivtiel S, Cohen M, Lapidot T, Nussbaum G, et al. Heat shock protein 60 activates cytokine-associated negative regulator suppressor of cytokine signaling 3 in T cells: effects on signaling, chemotaxis, and inflammation. J Immunol. 2005 175:276–85.

    PubMed  CAS  Google Scholar 

  45. Andersen P, Askgaard D, Ljungqvist L, Bennedsen J, Heron I. Proteins released from Mycobacterium tuberculosis during growth. Infect Immun. 1991 59:1905–10.

    PubMed  CAS  Google Scholar 

  46. Puissegur MP, Lay G, Gilleron M, Botella L, Nigou J, Marrakchi H, et al. Mycobacterial lipomannan induces granuloma macrophage fusion via a TLR2-dependent, ADAM9- and beta1 integrin-mediated pathway. J Immunol. 2007 178:3161–9.

    PubMed  CAS  Google Scholar 

  47. Apostolou I, Takahama Y, Belmant C, Kawano T, Huerre M, Marchal G, et al. Murine natural killer T(NKT) cells correction of natural killer cells. contribute to the granulomatous reaction caused by mycobacterial cell walls. Proc Natl Acad Sci USA. 1999 96:5141–6.

    Article  PubMed  CAS  Google Scholar 

  48. Bekierkunst A. Acute granulomatous response produced in mice by trehalose-6,6-dimycolate. J Bacteriol. 1968 96:958–61.

    PubMed  CAS  Google Scholar 

  49. Geisel RE, Sakamoto K, Russell DG, Rhoades ER. In vivo activity of released cell wall lipids of Mycobacterium bovis bacillus Calmette-Guerin is due principally to trehalose mycolates. J Immunol. 2005 174:5007–15.

    PubMed  CAS  Google Scholar 

  50. Gilleron M, Ronet C, Mempel M, Monsarrat B, Gachelin G, Puzo G. Acylation state of the phosphatidylinositol mannosides from Mycobacterium bovis bacillus Calmette Guerin and ability to induce granuloma and recruit natural killer T cells. J Biol Chem. 2001 276:34896–904.

    Article  PubMed  CAS  Google Scholar 

  51. Mempel M, Ronet C, Suarez F, Gilleron M, Puzo G, Van Kaer L, et al. Natural killer T cells restricted by the monomorphic MHC class 1b CD1d1 molecules behave like inflammatory cells. J Immunol. 2002 168:365–71.

    PubMed  CAS  Google Scholar 

  52. Rhoades ER, Geisel RE, Butcher BA, McDonough S, Russell DG. Cell wall lipids from Mycobacterium bovis BCG are inflammatory when inoculated within a gel matrix: characterization of a new model of the granulomatous response to mycobacterial components. Tuberculosis (Edinb). 2005 85:159–76.

    Article  CAS  Google Scholar 

  53. Swaim LE, Connolly LE, Volkman HE, Humbert O, Born DE, Ramakrishnan L. Mycobacterium marinum infection of adult zebrafish causes caseating granulomatous tuberculosis and is moderated by adaptive immunity. Infect Immun. 2006 74:6108–17.

    Article  PubMed  CAS  Google Scholar 

  54. Kaufmann SH, Vath U, Thole JE, Van Embden JD, Emmrich F. Enumeration of T cells reactive with Mycobacterium tuberculosis organisms and specific for the recombinant mycobacterial 64-kDa protein. Eur J Immunol. 1987 17:351–7.

    Article  PubMed  CAS  Google Scholar 

  55. Lowrie DB. DNA vaccines for therapy of tuberculosis: where are we now? Vaccine. 2006 24:1983–9.

    Article  PubMed  CAS  Google Scholar 

  56. van Eden W, Wick G, Albani S, Cohen I. Stress, Heat Shock Proteins, and Autoimmunity: How immune responses to heat shock proteins are to be used for the control of chronic inflammatory diseases. Ann NY Acad Sci. 2007 1113:217–37.

    Google Scholar 

  57. Mustafa AS, Lundin KE, Meloen RH, Shinnick TM, Oftung F. Identification of promiscuous epitopes from the Mycobacterial 65-kilodalton heat shock protein recognized by human CD4(+) T cells of the Mycobacterium leprae memory repertoire. Infect Immun. 1999 67:5683–9.

    PubMed  CAS  Google Scholar 

  58. Mitra DK, Rajalingam R, Taneja V, Bhattacharyya BC, Mehra NK. HLA-DR polymorphism modulates the cytokine profile of Mycobacterium leprae HSP-reactive CD4+ T cells. Clin Immunol Immunopathol. 1997 82:60–7.

    Article  PubMed  CAS  Google Scholar 

  59. Sasiain MC, de la Barrera S, Fink S, Finiasz M, Aleman M, Farina MH, et al. Interferon-gamma (IFN-gamma) and tumour necrosis factor-alpha (TNF-alpha) are necessary in the early stages of induction of CD4 and CD8 cytotoxic T cells by Mycobacterium leprae heat shock protein (hsp) 65 kD. Clin Exp Immunol. 1998 114:196–203.

    Article  PubMed  CAS  Google Scholar 

  60. Silva CL, Lowrie DB. Identification and characterization of murine cytotoxic T cells that kill Mycobacterium tuberculosis. Infect Immun. 2000 68:3269–74.

    Article  PubMed  CAS  Google Scholar 

  61. Franco LH, Wowk PF, Silva CL, Trombone AP, Coelho-Castelo AA, Oliver C, et al. A DNA vaccine against tuberculosis based on the 65 kDa heat-shock protein differentially activates human macrophages and dendritic cells. Genet Vaccines Ther. 2008 6:3.

    Article  PubMed  CAS  Google Scholar 

  62. Lamb JR, Bal V, Mendez-Samperio P, Mehlert A, So A, Rothbard J, et al. Stress proteins may provide a link between the immune response to infection and autoimmunity. Int Immunol. 1989 1:191–6

    Article  PubMed  CAS  Google Scholar 

  63. Res PC, Schaar CG, Breedveld FC, van Eden W, van Embden JD, Cohen IR, et al. Synovial fluid T cell reactivity against 65 kD heat shock protein of mycobacteria in early chronic arthritis. Lancet. 1988 2(8609):478–80.

    Article  PubMed  CAS  Google Scholar 

  64. van Eden W, Thole JE, van der Zee R, Noordzij A, van Embden JD, Hensen EJ, et al. Cloning of the mycobacterial epitope recognized by T lymphocytes in adjuvant arthritis. Nature. 1988 331(6152):171–3.

    Article  PubMed  Google Scholar 

  65. Durai M, Kim HR, Bala K, Moudgil KD. T cells against the pathogenic and protective epitopes of heat-shock protein 65 are crossreactive and display functional similarity: novel aspect of regulation of autoimmune arthritis. J Rheumatol. 2007 34:2134–43.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony R.M. Coates .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Netherlands

About this chapter

Cite this chapter

Coates, A.R., Cehovin, A., Hu, Y. (2009). Mycobacterial Heat Shock Protein 60s in the Induction and Regulation of Infectious Disease. In: Pockley, A., Calderwood, S., Santoro, M. (eds) Prokaryotic and Eukaryotic Heat Shock Proteins in Infectious Disease. Heat Shock Proteins, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2976-8_6

Download citation

Publish with us

Policies and ethics