Genetic Engineering in Floriculture

  • Yoshikazu TanakaEmail author
  • Ryutaro Aida


Numerous attractive floricultural crops have been developed by extensive hybridization and mutational breeding which suffer from genetic constraint intrinsic to each plant species. Breeding by utilizing genetic engineering has liberated such constraint and any genes from any organisms can be used to make novel floricultural crops. Novel violet/blue colored carnation and rose have been developed by expressing flavonoid biosynthetic genes from heterologous plant species and the carnation has been successfully commercialized. Flowers with modified scents, longer vase life and modified shapes have been also developed. Incorporating progressing plant science will give opportunities to generate novel flowers that appeal consumers.


Leaf Senescence Ornamental Plant Floral Scent Coniferyl Alcohol Vase Life 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abe M, Kobayashi Y, Yamamoto S et al (2005) FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309:1052–1056PubMedCrossRefGoogle Scholar
  2. Aharoni A, Jongsma MA, Kim T-Y et al (2006) Metabolic engineering of terpenoid biosynthesis in plants. Phyochem Rev 5:49–58CrossRefGoogle Scholar
  3. Aida R, Kishimoto S, Tanaka Y et al (2000) Modification of flower color in torenia (Torenia fournieri Lind.) by genetic transformation. Plant Sci 153:33–42CrossRefGoogle Scholar
  4. Aida R, Komano M, Saito M et al (2008) Chrysanthemum flower shape modification by suppression of chrysanthemum-AGAMOUS gene. Plant Biotechnol 25:55–59Google Scholar
  5. Aida R, Yoshida T, Ichimura K et al (1998) Extension of flower longevity in transgenic torenia plants incorporating ACC oxidase transgene. Plant Sci 138:91–101CrossRefGoogle Scholar
  6. Amaya I, Ratcliffe OJ, Bradley DJ (1999) Expression of CENTRORADIALIS (CEN) and CEN-like genes in tobacco reveals a conserved mechanism controlling phase change in diverse species. Plant Cell 11:1405–1418PubMedCrossRefGoogle Scholar
  7. Aswath CR, Mo SY, Kim SH et al (2004) IbMADS4 regulates the vegetative shoot development in transgenic chrysanthemum (Dendrathema grandiflora (Ramat.) Kitamura) Plant Sci 166:847–854CrossRefGoogle Scholar
  8. Bleecker AB, Kende H (2000) Ethylene: a gaseous signal molecule in plants. Ann Rev Cell Dev Biol 16:1–18CrossRefGoogle Scholar
  9. Bovy AG, Angenent GC, Dons HJM et al (1999) Heterologous expression of the Arabidopsis etr1-1 allele inhibits the senescence of carnation flowers. Mol Breed 5:301–308CrossRefGoogle Scholar
  10. Bowman JL, Smyth DR, Meyerowitz EM (1989) Genes directing flower development in Arabidopsis. Plant Cell 1:37–52PubMedCrossRefGoogle Scholar
  11. Bradley JM, Davies KM, Deroles SC et al (1998) The maize Lc regulatory gene up-regulates the flavonoid biosynthetic pathway of Petunia. Plant J 13:381–392CrossRefGoogle Scholar
  12. Casanova E, Trillas MI, Moysset L et al (2005) Influence of rol genes in floriculture. Biotechnol Adv 23:3–39PubMedCrossRefGoogle Scholar
  13. Chandler S, Tanaka Y (2007) Genetic modification in floriculture. CRC Crit Rev Plant Sci 26:169–197CrossRefGoogle Scholar
  14. Chang H, Jones ML, Banowetz GM et al (2003) Overproduction of cytokinins in petunia flowers transformed with P(SAG12)-IPT delays corolla senescence and decreases sensitivity to ethylene. Plant Physiol 132:2174–2183PubMedCrossRefGoogle Scholar
  15. Chen YF, Etheridge N, Schaller GE (2005) Ethylene signal transduction. Ann Bot 95:901–915PubMedCrossRefGoogle Scholar
  16. Citerne HL, Luo D, Pennington RT et al (2003) A phylogenomic investigation of CYCLOIDEA-like TCP genes in the Leguminosae. Plant Physiol 131:1042–1053PubMedCrossRefGoogle Scholar
  17. Clark DG, Dervinis C, Barrett JE et al (2004) Drought-induced leaf senescence and horticultural performance of transgenic PSAG12-IPT petunias. J Am Soc Hort Sci 129:93–99Google Scholar
  18. Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37PubMedCrossRefGoogle Scholar
  19. Corbesier L, Vincent C, Jang S et al (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316:1030–1033PubMedCrossRefGoogle Scholar
  20. Courtney-Gutterson N, Napoli C, Lemieux C et al (1994) Modification of flower color in Florist’s Chrysanthemum: production of a white-flowering variety through molecular genetics. Biotechnol 12:268–271CrossRefGoogle Scholar
  21. Cui ML, Takada K, Ma B et al (2004) Overexpression of a mutated melon ethylene receptor gene Cm-ETR1/H69A confers reduced ethylene sensitivity in a heterologous plant, Nemesia strumosa. Plant Sci 167:253–258CrossRefGoogle Scholar
  22. Cunningham FXJ, Gantt E (2005) A study in scarlet: enzymes of ketocarotenoid biosynthesis in the flowers of Adonis aestivalis. Plant J 41:478–492PubMedCrossRefGoogle Scholar
  23. Davidovich-Rikanati R, Sitrit Y, Tadmor Y et al (2007) Enrichment of tomato flavor by diversion of the early plastidial terpenoid pathway. Nat Biotechnol 25:899–901PubMedCrossRefGoogle Scholar
  24. Davies B, Rosa AD, Eneva T et al (1996) Alteration of tobacco floral organ identity by expression of combinations of Antirrhinum MADS-box genes. Plant J 10:663–677PubMedCrossRefGoogle Scholar
  25. Davies KM, Bloor SJ, Spiller GB et al (1998) Production of yellow colour in flowers: redirection of flavonoid biosynthesis in Petunia. Plant J 13:259–266CrossRefGoogle Scholar
  26. Deroles S, Bradley JM, Schwinn KE et al (1998) An antisense chalcone synthase cDNA leads to novel colour patterns in lisianthus (Eustoma grandiflorum) flowers. Mol Breed 4:59–66CrossRefGoogle Scholar
  27. Dexter R, Qualley A, Kish CM et al (2007) Characterizatio of a petunia acetyltransferase involved in the biosynthesis of the floral volatile isoeugenol. Plant J 49:265–275PubMedCrossRefGoogle Scholar
  28. Dixon RA (2005) Engineering of plant natural product pathways. Curr Opin Plant Biol 8:329–336PubMedCrossRefGoogle Scholar
  29. Dudareva N, Murfitt LM, Mann CJ et al (2000) Developmental regulation of methyl benzoate biosynthesis and emission in snapdragon flowers. Plant Cell 12:949–961PubMedCrossRefGoogle Scholar
  30. Elomaa P, Helariutta Y, Griesbach RJ et al (1995) Transgenic inactivation in Petunia hybrida is influenced by the properties of the foreign gene. Mol Gen Genet 248:645–649CrossRefGoogle Scholar
  31. Elomaa P, Honkanen J, Puska R et al. (1993) Agrobacterium-mediated transfer of antisense chalcone synthase cDNA to Gerbera hybrida inhibits flower pigmentation. Biotechnol 11:508–511CrossRefGoogle Scholar
  32. Endo T, Shimada T, Fujii H et al (2005) Ectopic expression of an FT homolog from citrus confers an early flowering phenotype on trifoliate orange (Poncirus trifoliata L. Raf.). Transgenic Res 14:703–712PubMedCrossRefGoogle Scholar
  33. Forkamnn G, Ruhnau B (1987) Distinct substrate specificity of dihydroflavonol 4-reductase from flowers of Petunia hybrida. Z. Naturforschung 42c:1146–1148Google Scholar
  34. Gan S, Amasino RM (1995) Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270:1986–1988PubMedCrossRefGoogle Scholar
  35. Gan S, Amasino RM (1996) Cytokinins in plant senescence: from spray and pray to clone and play. BioEssays 18:557–565CrossRefGoogle Scholar
  36. Gan S, Amasino RM (1997) Making sense of senescence. Molecular genetic regulation and manipulation of leaf senescence. Plant Physiol 113:313–319PubMedGoogle Scholar
  37. Grotewold E (2006) The genetics and biochemistry of floral pigments. Annu Rev Plant Biol 57:761–780PubMedCrossRefGoogle Scholar
  38. Guterman I, Masci T, Chen X et al (2006) Generation of phenylpropanoid pathway-derived volatiles in transgenic plants: rose alcohol acetyltransferase produces phenylethyl acetate and benzyl acetate in petunia flowers. Plant Mol Biol 60:555–563PubMedCrossRefGoogle Scholar
  39. Gutterson N (1995) Anthocyanin biosynthetic genes and their application to flower color modification through sense suppression. Hort Sci 30:964–966Google Scholar
  40. Han BH, Suh EJ, Lee SY et al (2007) Selection of non-branching lines induced by introducing Ls-like cDNA into chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura) “Shuho-no-chikara”. Sci Hortic 115:70–75CrossRefGoogle Scholar
  41. Hendel-Rahmanim K, Masci T, Vainstein A et al (2007) Diurnal regulation of scent emission in rose flowers. Planta 226:1491–1499PubMedCrossRefGoogle Scholar
  42. Hiratsu K, Matsui K, Koyama T et al (2003) Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis. Plant J 34:733–739PubMedCrossRefGoogle Scholar
  43. Holton TA, Brugliera F, Lester DR et al (1993) Clonig and expression of cytochrome P450 genes controlling flower colour. Nature 366:276–279PubMedCrossRefGoogle Scholar
  44. Hvoslef-Eide AK, Fjeld T, Einset JW (1995) Breeding Christmas begonia (Begonia x cheimantha Everett) for increased keeping quality by traditional and biotechnological methods. Acta Hortic 405:197–204Google Scholar
  45. Kaminaga Y, Schnepp J, Peel G et al (2006) Plant phenylacetaldehyde synthase is a bifunctional homotetrameric enzyme that catalyzes phenylalanine decarboxylation and oxidation. J Biol Chem 281:23357–23366PubMedCrossRefGoogle Scholar
  46. Kardailsky I, Shukla VK, Ahn JH et al (1999) Activation tagging of the floral inducer FT. Science 286:1962–1965PubMedCrossRefGoogle Scholar
  47. Katsumoto Y, Mizutani M, Fukui Y et al (2007) Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin. Plant Cell Physiol 48:1589–1600PubMedCrossRefGoogle Scholar
  48. Khodakovskaya M, Li Y, Li J et al (2005) Effects of cor15a-IPT gene expression on leaf senescence in transgenic Petunia x hybrida and Dendranthema x grandiflorum. J Exp Bot 56:1165–1175PubMedCrossRefGoogle Scholar
  49. Kim S, Koh J, Yoo MJ et al (2005) Expression of floral MADS-box genes in basal angiosperms: implications for the evolution of floral regulators. Plant J 43:724–744PubMedCrossRefGoogle Scholar
  50. Knoester M, van Loon L, van Heuvel J et al (1998) Ethylene-insensitive tobacco lacks non-host resistance against soil-borne fungi. Proc Natl Acad Sci USA 95:1933–1937PubMedCrossRefGoogle Scholar
  51. Kobayashi Y, Kaya H, Goto K et al (1999) A pair of related genes with antagonistic roles in mediating flowering signals. Science 286:1960–1962PubMedCrossRefGoogle Scholar
  52. Koeduka T, Fridman E, Gang DR et al (2006) Eugenol and isoeugenol, characteristic aromatic constituents of spices, are biosynthesized via reduction of a coniferyl alcohol ester. Proc Natl Acad Sci USA 103:10128–10133PubMedCrossRefGoogle Scholar
  53. Koes R, Verweij W, Quattrocchio F (2005) Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci 10:236–242PubMedCrossRefGoogle Scholar
  54. Lavy M, Zuker A, Lewinsohn E et al (2002) Linalool and linalool oxide production in transgenic carnation flowers expressing the Clarkia breweri linalool synthase gene. Mol Breed 9:103–111CrossRefGoogle Scholar
  55. Lewinsohn E, Schalechet F, Wilkinson J et al (2001) Enhanced levels of the aroma and flavor compound S-linalool by metabolic engineering of the terpenoid pathway in tomato fruits. Plant Physiol 127:1256–1265PubMedCrossRefGoogle Scholar
  56. Lloyd AM, Walbot V, Davis RW (1992) Arabidopsis and Nicotiana anthocyanin production activated by maize regulators R and C1. Science 258:1773–1775PubMedCrossRefGoogle Scholar
  57. Lucker J, Bouwmeester HJ, Schwab W et al (2001) Expression of Clarkia S-linalool synthase in transgenic petunia plants results in the accumulation of S-linalyl-beta-D-glucopyranoside. Plant J 27:315–324PubMedCrossRefGoogle Scholar
  58. Lucker J, Schwab W, Franssen MC et al (2004a) Metabolic engineering of monoterpene biosynthesis: two-step production of (+)-trans-isopiperitenol by tobacco. Plant J 39:135–145PubMedCrossRefGoogle Scholar
  59. Lucker J, Schwab W, van Hautum B et al (2004b) Increased and altered fragrance of tobacco plants after metabolic engineering using three monoterpene synthases from lemon. Plant Physiol 134:510–519PubMedCrossRefGoogle Scholar
  60. Luo D, Carpenter R, Vincent C et al (1996) Origin of floral asymmetry in Antirrhinum. Nature 383:794–799PubMedCrossRefGoogle Scholar
  61. Mann V, Harker M, Pecker I et al (2000) Metabolic engineering of astaxanthin production in tobacco flowers. Nat Biotechnol 18:888–892PubMedCrossRefGoogle Scholar
  62. Meyer P, Heidmann I (1994) Epigenetic variants of a transgenic petunia line show hypermethylation in transgene DNA: an indication for specific recognition of foreign DNA in transgenic plants. Mol Gen Genet 243:390–399PubMedGoogle Scholar
  63. Meyer P, Heidemann I, Forkmann G et al (1987) A new petunia flower colour generated by transformation of a mutant with a maize gene. Nature 330:677–678PubMedCrossRefGoogle Scholar
  64. Nakagawa H, Jiang CJ, Sakakibara H et al (2005) Overexpression of a petunia zinc-finger gene alters cytokinin metabolism and plant forms. Plant J 41:512–523PubMedCrossRefGoogle Scholar
  65. Nakamura N, Fukuchi-Mizutani M, Suzuki K et al (2006) RNAi suppression of the anthocyanidin synthase gene in Torenia hybrida yields white flowers with higher frequency and better stability than antisense and sense suppression. Plant Biotechnol 23:13–18Google Scholar
  66. Nakatsuka T, Abe Y, Kakizaki Y et al (2007) Production of red-flowered plants by genetic engineering of multiple flavonoid biosynthetic genes. Plant Cell Rep 26:1951–1959PubMedCrossRefGoogle Scholar
  67. Nakayama T, Yonekura-Sakakibara K, Sato T et al (2000) Aureusidin synthase: a polyphenol oxidase homolog responsible for flower coloration. Science 290:1163–1166PubMedCrossRefGoogle Scholar
  68. Napoli CL, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289PubMedCrossRefGoogle Scholar
  69. Narumi T, Aida R, Ohmiya A et al (2005) Transformation of chrysanthemum with mutated ethylene receptor genes: mDG-ERS1 transgenes conferring reduced ethylene sensitivity and characterization of the transformants. Postharvest Biol Technol 37:101–110CrossRefGoogle Scholar
  70. Nishihara M, Nakatsuka T, Hosokawa K et al (2006) Dominant inheritance of white-flowered and herbicide-resistant traits in transgenic gentian plants. Plant Biotechnol 23:25–31Google Scholar
  71. Nishijima T, Shima K (2006) Change in flower morphology of Torenia fournieri Lind. induced by forchlorfenuron application. Sci Hortic 109:254–261CrossRefGoogle Scholar
  72. Nitasaka E (2003) Insertion of an En/Spm-related transposable element into a floral homeotic gene DUPLICATED causes a double flower phenotype in the Japanese morning glory. Plant J 35:522–531CrossRefGoogle Scholar
  73. Ohmiya A, Kishimoto S, Aida R et al (2006) Carotenoid cleavage dioxygenase (CmCCD4a) contributes to white color formation in chrysanthemum petals. Plant Physiol 142:1193–1201PubMedCrossRefGoogle Scholar
  74. Okinaka Y, Shimada Y, Nakano-Shimada R et al (2003) Selective accumulation of delphinidin derivatives in tobacco using a putative flavonoid 3’,5’-hydroxylase cDNA from Campanula medium. Biosci Biotechnol Biochem 67:161–165PubMedCrossRefGoogle Scholar
  75. Ono E, Fukuchi-Mizutani M, Nakamura N et al (2006) Yellow flowers generated by expression of the aurone biosynthetic pathway. Proc Natl Acad Sci USA 103:11075–11080PubMedCrossRefGoogle Scholar
  76. Orlova I, Marshall-Colon A, Schnepp J et al (2006) Reduction of benzenoid synthesis in petunia flowers reveals multiple pathways to benzoic acid and enhancement in auxin transport. Plant Cell 18:3458–3475PubMedCrossRefGoogle Scholar
  77. Oud JSN, Schneiders H, Kool AJ et al (1995) Breeding of transgenic orange Petunia hybrida varieties. Euphytica 85:403–409CrossRefGoogle Scholar
  78. Petty LM, Harberd NP, Carre IA et al (2005) Expression of the Arabidopsis gai gene under its own promoter causes a reduction in plant height in chrysanthemum by attenuation of the gibberellin response. Plant Sci 164:175–182CrossRefGoogle Scholar
  79. Pichersky E, Dudareva N (2007) Scent engineering: toward the goal of controlling how flowers smell. Trends Biotechnol 25:105–110PubMedCrossRefGoogle Scholar
  80. Pichersky E, Raguso RA, Lewinsohn E et al (1994) Floral scent production in Clarkia (Onagraceae) (I. Localization and developmental modulation of monoterpene emission and linalool synthase activity). Plant Physiol 106:1533–1540PubMedGoogle Scholar
  81. Picone MJ, Clery RA, Watanane N et al (2004) Rhythmic emission of floral volatiles from Rosa damascena semperflorens cv. ‘Quatre Saisons’. Planta 219:468–478Google Scholar
  82. Rogers HJ (2006) Programmed cell death in floral organs: how and why do flowers die? Ann Bot 97:309–315PubMedCrossRefGoogle Scholar
  83. Savin KW, Baudinette SC, Graham MW et al (1995) Antisense ACC oxidase RNA delays carnation petal senescence. Hort Sci 30:970–972Google Scholar
  84. Schnepp J, Dudareva N (2006) Floral scent: biosynthesis, regulation and genetic modification. In: Ainsworth C (ed) Flowering and its manipulation. BlackwellGoogle Scholar
  85. Schroeder KR, Stimart DP, Nordheim EV (2001) Response of Nicotiana alata to insertion of an autoregulated senescence-inhibition gene. J Am Soc Hortic Sci 125:523–530Google Scholar
  86. Seitz C, Vitten M, Steinbach P et al (2007) Redirection of anthocyanin synthesis in Osteospermum hybrida by a two-enzyme manipulation strategy. Phytochemistry 68:824–833PubMedCrossRefGoogle Scholar
  87. Shaw JF, Chen HH, Tsai MF et al (2002) Extended flower longevity of Petunia hybrida plants transformed with boers, a mutated ERS gene of Brassica oleracea. Mol Breed 9:211–216CrossRefGoogle Scholar
  88. Shibuya K, Clark DG (2006) Ethylene; current status and future directions of using transgenic techniques to improve flower longevity of ornamental crops. J Crop Improv 18:391– 412CrossRefGoogle Scholar
  89. Shibuya K, Barry KG, Ciardi JA et al (2004) The central role of PhEIN2 in ethylene responses throughout plant development in petunia. Plant Physiol 136:2900–2912PubMedCrossRefGoogle Scholar
  90. Simkin AJ, Schwartz SH, Auldridge M et al (2004a) The tomato carotenoid cleavage dioxygenase 1 genes contribute to the formation of the flavor volatiles beta-ionone, pseudoionone, and geranylacetone. Plant J 40:882–892PubMedCrossRefGoogle Scholar
  91. Simkin AJ, Underwood BA, Auldridge M et al (2004b) Circadian regulation of the PhCCD1 carotenoid cleavage dioxygenase controls emission of beta-ionone, a fragrance volatile of petunia flowers. Plant Physiol 136:3504–3514PubMedCrossRefGoogle Scholar
  92. Sriskandarajah S, Mibus H, Serek M (2007) Transgenic Campanula carpatica plants with reduced ethylene sensitivity. Plant Cell Rep 26:805–813PubMedCrossRefGoogle Scholar
  93. Stearns JC, Glick BR (2003) Transgenic plants with altered ethylene biosynthesis or perception. Biotechnol Adv 21:193–210PubMedCrossRefGoogle Scholar
  94. Stewart A (2007) Flower confidential. Algonquin books of Chapel Hill, Chapel Hill, NC.Google Scholar
  95. Suzuki K, Zue H, Tanaka Y et al (2000) Flower color modifications of Torenia hybrida by cosuppression of anthocyanin biosynthesis genes. Mol Breed 6:239–246CrossRefGoogle Scholar
  96. Suzuki S, Nishihara M, Nakatsuka T et al (2007) Flower color alteration in Lotus japonicus by modification of the carotenoid biosynthetic pathway. Plant Cell Rep 26:951–959PubMedCrossRefGoogle Scholar
  97. Tamaki S, Matsuo S, Wong HL et al (2007) Hd3a protein is a mobile flowering signal in rice. Science 316:1033–1036PubMedCrossRefGoogle Scholar
  98. Tanaka Y (2006) Flower colour and cytochromes P450. Phyochem Rev 5:283–291CrossRefGoogle Scholar
  99. Tanaka Y, Brugliera F (2006) Flower colour. In: Ainsworth C (ed) Flowering and its manipulation. Blackwell.Google Scholar
  100. Tanaka Y, Ohmiya A (2008) Seeing is believing. Engineering a plant pigment biosynthetic pathway. Curr Opin Biotechnol 19:190–197PubMedCrossRefGoogle Scholar
  101. Tanaka Y, Fukui Y, Fukuchi-Mizutani M et al (1995) Molecular cloning and characterization of Rosa hybrida dihydroflavonol 4-reductase. Plant Cell Physiol 36:1023–1031PubMedGoogle Scholar
  102. Tanaka Y, Katsumoto Y, Brugliera F et al (2005) Genetic engineering in floriculture. Plant Cell, Tissue Organ Cult 80:1–24CrossRefGoogle Scholar
  103. Tanaka Y, Sasaki N, Ohmiya A (2008) Plant pigments for coloration. Plant J 54:733–749PubMedCrossRefGoogle Scholar
  104. Theißen G (2001) Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol 4:75–85PubMedCrossRefGoogle Scholar
  105. Tieman D, Taylor M, Schauer N et al (2006) Tomato aromatic amino acid decarboxylases participate in synthesis of the flavor volatiles 2-phenylethanol and 2-phenylacetaldehyde. Proc Natl Acad Sci USA 103:8287–8292PubMedCrossRefGoogle Scholar
  106. Tieman DM, Loucas HM, Kim JY et al (2007) Tomato phenylacetaldehyde reductases catalyze the last step in the synthesis of the aroma volatile 2-phenylethanol. Phytochemistry 68:2660–2669PubMedCrossRefGoogle Scholar
  107. Togami J, Tamura M, Ishiguro K et al (2006) Molecular characterization of the flavonoid biosynthesis of Verbena hybrida and the functional analysis of verbena and Clitoria ternatea F3’5’H genes in transgenic verbena. Plant Biotehcnol 23:5–11Google Scholar
  108. Tsuda S, Fukui Y, Nakamra N et al (2004) Flower color modification of Petunia hybrida commercial varieties by metabolic engineering. Plant Biotechnol 21:377–386Google Scholar
  109. Ueyama Y, Katsumoto Y, Fukui Y et al (2006) Molecular characterization of the flavonoid biosynthetic pathway and flower color modification of Nierembergia sp. Plant Biotechnol 23:19–24Google Scholar
  110. Underwood BA, Tieman DM, Shibuya K et al (2005) Ethylene-regulated floral volatile synthesis in petunia corollas. Plant Physiol 138: 255–266PubMedCrossRefGoogle Scholar
  111. van der Krol AR, Lenting PE, Veenstra J et al (1988) An antisense chalcone synthase gene in transgenic plants inhibits flower pigmentation. Nature 333:866–869CrossRefGoogle Scholar
  112. van der Krol AR, Mur LA, Beld M et al (1990) Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell 2:291–299PubMedCrossRefGoogle Scholar
  113. Verdonk JC, Haring MA, van Tunen AJ et al (2005) ODORANT1 regulates fragrance biosynthesis in petunia flowers. Plant Cell 17:1612–1624PubMedCrossRefGoogle Scholar
  114. Verdonk JC, Ric de Vos CH, Verhoeven HA et al (2003) Regulation of floral scent production in petunia revealed by targeted metabolomics. Phytochemistry 62:997–1008PubMedCrossRefGoogle Scholar
  115. Vishnevetsky M, Meyerowitz EM (2002) Molecular control of flower development. In: Vainstein A (ed) Breeding for ornamentals: classical and molecular approaches. Kluwer, Norwell, MA.Google Scholar
  116. Waterhouse PM, Graham MW, Wang M-B (1998) Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc Natl Acad Sci USA 95:13959–13964PubMedCrossRefGoogle Scholar
  117. Wigge PA, Kim MC, Jaeger KE et al (2005) Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309:1056–1059PubMedCrossRefGoogle Scholar
  118. Wilkinson JQ, Lanahan MB, Clark DG et al (1997) A dominant mutant receptor from Arabidopsis confers ethylene insensitivity in heterologous plants. Nat Biotechnol 15:444–447PubMedCrossRefGoogle Scholar
  119. Wu S, Schalk M, Clark A et al (2006) Redirection of cytosolic or plastidic isoprenoid precursors elevates terpene production in plants. Nat Biotechnol 24:1441–1447PubMedCrossRefGoogle Scholar
  120. Yu D, Kotilainen M, Pollanen E et al (1999) Organ identity genes and modified patterns of flower development in Gerbera hybrida (Asteraceae). Plant J 17:51–62PubMedCrossRefGoogle Scholar
  121. Zheng ZL, Yang Z, Jang JC et al (2001) Modification of plant architecture in chrysanthemum by ectopic expression of the tobacco phytochrome B1 gene. J Am Soc Hort Sci 126:19–26Google Scholar
  122. Zuker A, Tzfira T, Ben-meir H et al (2002) Modification of flower colour and fragrance by antisense suppression of the flavanone 3-hydroxylase gene. Mol Breed 9:33–41CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Institute for Plant Science, Suntory Holdings LtdShimamoto, MishimaJapan
  2. 2.National Institute of Floricultural ScienceTsukubaJapan

Personalised recommendations