Functional Genomics For Crop Improvement

  • Seedhabadee Ganeshan
  • Pallavi Sharma
  • Ravindra N. ChibbarEmail author


Plant breeding has had a tremendous influence on crop improvement. However, due to dwindling germplasm resources, identification of variability for incorporation into new cultivars is becoming more difficult. Therefore, there has been recourse to alternative approaches including mutagenesis, tissue culture and genetic transformation to aid breeding programs. Furthermore, with the vast repertoire of genome-wide data from different expression profiling techniques such as microarrays, more subtle understanding of gene expression is being obtained and is further helping plant breeders to entertain a different selection approach based on expression quantitative traits to maximize combinations of genes capable of conferring high performance. In this chapter, we review some of the aspects of plant breeding and the influence functional genomics has on breeding programs. Some of the challenges to functional genomics and breeding come from establishment of high-throughput transformation systems to assess gene function, which is limiting functional characterization of numerous genes in their respective crops. Therefore, this chapter also focuses on the need to gain better understanding of the development of gene transfer systems for crop plants to make use of the array of available gene information data.


Quantitative Trait Locus Shoot Apical Meristem Somaclonal Variation Massively Parallel Signature Sequence Functional Genomic Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Genome Canada, Genome Prairie, Canada Research Chairs, Canada Foundation for Innovation, and Natural Sciences and Engineering Research Council, are gratefully acknowledged for financial support of research in our laboratory.


  1. Abel PP, Nelson RS, De B, Hoffmann N, Rogers SG, Fraley RT, Beachy RN (1986) Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232:738–743PubMedCrossRefGoogle Scholar
  2. Ahloowalia BS, Maluszynski M, Nichterlein K (2004) Global impact of mutation-derived varieties. Euphytica 135:187–204CrossRefGoogle Scholar
  3. Bachem CWB, van der Hoeven RS, De Bruijn SM, Vreugdenhil D, Zabeau M, Visser RGF (1996) Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. Plant J 9:745–753PubMedCrossRefGoogle Scholar
  4. Baillie AMR, Rossnagel BG, Kartha KK (1993) In vitro selection for improved chlorsulfuron tolerance in barley (Hordeum vulgare L.). Euphytica 67:151–154CrossRefGoogle Scholar
  5. Barton KA, Chilton MD (1983) Agrobacterium Ti plasmids as vectors for plant genetic engineering. Methods Enzymol 101:527–539PubMedCrossRefGoogle Scholar
  6. Barton MK (1998) Cell type specification and self renewal in the vegetative shoot apical meristem. Curr Opin Plant Biol 1:37–42PubMedCrossRefGoogle Scholar
  7. Baulcombe DC (1999) Fast forward genetics based on virus-induced gene silencing. Curr Opin Plant Biol 2:109–113PubMedCrossRefGoogle Scholar
  8. Benito EP, Prins T, vanKan JAL (1996) Application of differential display RT-PCR to the analysis of gene expression in a plant–fungus interaction. Plant Mol Biol 32:947–957PubMedCrossRefGoogle Scholar
  9. Bidani A, Nouri-Ellouz O, Lakhoua L, Sihachakr D, Cheniclet C, Mahjoub A, Drira N, Gargouri-Bouzid R (2007) Interspecific potato somatic hybrids between Solanum berthaultii and Solanum tuberosum L. showed recombinant plastome and improved tolerance to salinity. Plant Cell Tissue Organ Cult 91:179–189CrossRefGoogle Scholar
  10. Blakeslee AF, Belling J, Farnham ME, Bergner AD (1922) A haploid mutant in the jimson weed Datura stramonium. Science 55:646–647PubMedCrossRefGoogle Scholar
  11. Borlaug NE (2002) Feeding a world of 10 billion people: The miracle ahead. In Vitro Cell Dev Biol Plant 38:221–228CrossRefGoogle Scholar
  12. Bowman JL, Eshed Y (2000) Formation and maintenance of the shoot apical meristem. Trends Plant Sci 5:110–115PubMedCrossRefGoogle Scholar
  13. Bozkurt O, Unver T, Akkaya M (2007) Genes associated with resistance to wheat yellow rust disease identified by differential display analysis. Physiol Mol Plant Pathol 71:251–259CrossRefGoogle Scholar
  14. Bregitzer P, Dahleen LS, Neate S, Schwarz P, Mancharan M (2008) A single backcross effectively eliminates agronomic and quality alterations caused by somaclonal variation in transgenic barley. Crop Sci 48:471–479CrossRefGoogle Scholar
  15. Breitling R, Li Y, Tesson BM, Fu JY, Wu CL, Wiltshire T, Gerrits A, Bystrykh LV, de Haan G, Su AI, Jansen RC (2008) Genetical genomics: spotlight on QTL hotspots. PLoS Genet 4(10): e1000232. doi: 10.1371/journal.pgen.1000232PubMedCrossRefGoogle Scholar
  16. Brenner S, Johnson M, Bridgham J, Golda G, Lloyd DH, Johnson D, Luo SJ, McCurdy S, Foy M, Ewan M, Roth R, George D, Eletr S, Albrecht G, Vermaas E, Williams SR, Moon K, Burcham T, Pallas M, DuBridge RB, Kirchner J, Fearon K, Mao J, Corcoran K (2000) Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol 18:630–634PubMedCrossRefGoogle Scholar
  17. Breyne P, Dreesen R, Cannoot B, Rombaut D, Vandepoele K, Rombauts S, Vanderhaeghen R, Inze D, Zabeau M (2003) Quantitative cDNA-AFLP analysis for genome-wide expression studies. Mol Genet Genomics 269:173–179PubMedGoogle Scholar
  18. Brigger I, Dubernet C, Couvreur P (2002) Nanoparticles in cancer therapy and diagnosis. Adv Drug Del Rev 54:631–651CrossRefGoogle Scholar
  19. Broothaerts W, Mitchell HJ, Weir B, Kaines S, Smith LMA, Yang W, Mayer JE, Roa-Rodriguez C, Jefferson RA (2005) Gene transfer to plants by diverse species of bacteria. Nature 433:629–633PubMedCrossRefGoogle Scholar
  20. Buiatti M, Ingram DS (1991) Phytotoxins as tools in breeding and selection of disease-resistant plants. Experientia 47:811–819CrossRefGoogle Scholar
  21. Burge GK, Morgan ER, Seelye JF (2002) Opportunities for synthetic plant chimeral breeding: past and future. Plant Cell Tissue Organ Cult 70:13–21CrossRefGoogle Scholar
  22. Chandran D, Sharopova N, Ivashuta S, Gantt JS, VandenBosch KA, Samac DA (2008) Transcriptome profiling identified novel genes associated with aluminum toxicity, resistance and tolerance in Medicago truncatula. Planta 228:151–166PubMedCrossRefGoogle Scholar
  23. Chase SS (1949) Monoploid frequencies in a commercial double cross hybrid maize, and in its component single cross hybrids and inbred lines. Genetics 34:328–332Google Scholar
  24. Chase SS (1952) Production of homozygous diploids of maize from monoploids. Agron J 44:263–267CrossRefGoogle Scholar
  25. Chen Q, Lynch D, Platt HW, Li HY, Shi Y, Li HJ, Beasley D, Rakosy-Tican L, Theme R (2004) Interspecific crossability and cytogenetic analysis of sexual progenies of Mexican wild diploid 1EBN species Solanum pinnatisectum and S. cardiophyllum. Am J Potato Res 81:159–169CrossRefGoogle Scholar
  26. Chen Y, Zhao S, Yan Q, Li Y, Wu X, Xiao G (2007) Tolerance of submergence in rice: gene studies using differential display technique. Chin J Agric Biotechnol 4:139–144CrossRefGoogle Scholar
  27. Clarke HJ, Wilson JG, Kuo I, Lulsdorf MM, Mallikarjuna N, Kuo J, Siddique KHM (2006) Embryo rescue and plant regeneration in vitro of selfed chickpea (Cicer arietinum L.) and its wild annual relatives. Plant Cell Tissue Organ Cult 85:197–204CrossRefGoogle Scholar
  28. Colebatch G, Trevaskis B, Udvardi M (2002) Functional genomics: tools of the trade. New Phytol 153:27–36CrossRefGoogle Scholar
  29. Coughlan SJ, Agrawal V, Meyers B (2004) A comparison of global gene expression measurement technologies in Arabidopsis thaliana. Comp Funct Genomics 5:245–252PubMedCrossRefGoogle Scholar
  30. Darwish SA, Pan L, Ide C, Bede JC (2008) Caterpillar-specific gene expression in the legume, Medicago truncatula. Plant Mol Biol Rep 26:12–31CrossRefGoogle Scholar
  31. Davey MR, Anthony P, Power JB, Lowe KC (2005) Plant protoplasts: status and biotechnological perspectives. Biotechnol Adv 23:131–171PubMedCrossRefGoogle Scholar
  32. Degenkolbe T, Do PT, Zuther E, Repsilber D, Walther D, Hincha DK, Kohl KI (2009) Expression profiling of rice cultivars differing in their tolerance to long-term drought stress. Plant Mol Biol 69:133–153PubMedCrossRefGoogle Scholar
  33. Drew RA, Siar SV, O’Brien CM, Magdalita PM, Sajise AGC (2006) Breeding for papaya ringspot virus resistance in Carica papaya via hybridisation with Vasconcellea quercifolia. Aust J Exp Agric 46:413–418CrossRefGoogle Scholar
  34. Dziadczyk P, Bolibok H, Tyrka M, Hortynski JA (2003) In vitro selection of strawberry (Fragaria × ananassa Duch.) clones tolerant to salt stress. Euphytica 132:49–55CrossRefGoogle Scholar
  35. Ernst D, Liegl I, Kiefer E, Seidlitz HK, Heller W, Sandermann H (2001) Early changes in mRNA populations in leaves of ultraviolet-B-treated European beech (Fagus sylvatica L.) seedlings. Acta Physiologiae Plantarum 23:343–349CrossRefGoogle Scholar
  36. Escorial MC, Sixto H, GarciaBaudin JM, Chueca MC (1996) In vitro culture selection increases glyphosate tolerance in barley. Plant Cell Tissue Organ Cult 46:179–186CrossRefGoogle Scholar
  37. FAO/IAEA. Mutant varieties database, Joint FAO/IAEA Home. 2006. 5-1-2009. Ref Type: Online Source
  38. Feng YY, Takahashi H, Akagi H, Mori K (2006) New interspecific rice genome constructions obtained by symmetric cell fusion. Plant Breeding 125:403–404CrossRefGoogle Scholar
  39. Fernandez P, Rienzo J, Fernandez L, Hopp H, Paniego N, Heinz R (2008) Transcriptomic identification of candidate genes involved in sunflower responses to chilling and salt stresses based on cDNA microarray analysis. BMC Plant Biol 8. doi:10.1186/1471-2229-8-11Google Scholar
  40. Filipecki M, Malepszy S (2006) Unintended consequences of plant transformation: a molecular insight. J Appl Genet 47:277–286PubMedGoogle Scholar
  41. Finer JJ, Vain P, Jones MW, McMullen MD (1992) Development of the particle inflow gun for DNA delivery to plant cells. Plant Cell Rep 11:323–328CrossRefGoogle Scholar
  42. Fraley RT, Horsch RB (1983) In vitro transformation of Petunia protoplasts by Agrobacterium tumefaciens. J Cell Biochem Supplement 250Google Scholar
  43. Fratini R, Ruiz ML (2006) Interspecific hybridization in the genus Lens applying in vitro embryo rescue. Euphytica 150:271–280CrossRefGoogle Scholar
  44. Fratini R, Ruiz ML (2008) Micropropagation of intra and interspecific Lens hybrids. Euphytica 159:199–206CrossRefGoogle Scholar
  45. Fulton RW (1986) Practices and precautions in the use of cross protection for plant virus disease control. Annu Rev Phytopathol 24:67–81CrossRefGoogle Scholar
  46. Fusco N, Micheletto L, Dal Corso G, Borgato L, Furini A (2005) Identification of cadmium-regulated genes by cDNA-AFLP in the heavy metal accumulator Brassica juncea L. J Exp Bot 56:3017–3027PubMedCrossRefGoogle Scholar
  47. Gaj MD (2004) Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana (L.) Heynh. Plant Growth Reg 43:27–47CrossRefGoogle Scholar
  48. Ganeshan S, Caswell KL, Kartha KK and Chibbar RN. (2002). Shoot regeneration and proliferation. In: Khachatourians GG, McHughen A, Scorza R, Nip W-K and Hui YH (eds) Transgenic plants and crops. Marcel Dekker Inc., New York, pp 69–84Google Scholar
  49. Ganeshan S, Baga M, Harvey BL, Rossnagel BG, Scoles GJ, Chibbar RN (2003) Production of multiple shoots from thidiazuron-treated mature embryos and leaf-base/apical meristems of barley (Hordeum vulgare). Plant Cell Tissue Organ Cult 73:57–64CrossRefGoogle Scholar
  50. Ganeshan S, Chodaparambil SV, Baga M, Fowler DB, Hucl P, Rossnagel BG, Chibbar RN (2006) In vitro regeneration of cereals based on multiple shoot induction from mature embryos in response to thidiazuron. Plant Cell Tissue Organ Cult 85:63–73CrossRefGoogle Scholar
  51. Ganeshan S, Vitamvas P, Fowler DB, Chibbar RN (2008) Quantitative expression analysis of selected COR genes reveals their differential expression in leaf and crown tissues of wheat (Triticum aestivum L.) during an extended low temperature acclimation regimen. J Exp Bot 59:2393–2402PubMedCrossRefGoogle Scholar
  52. Ganeshan S, Denesik T, Fowler DB, Chibbar RN (2009) Quantitative expression analysis of selected low temperature-induced genes in autumn-seeded wheat (Triticum aestivum L.) reflects changes in soil temperature. Environ Exp Bot 66:46–53Google Scholar
  53. Ge TM, Lin XH, Qin FL, Yu SW, Yu YJ (2006) Protoplast electrofusion between common wheat (Triticum aestivum L.) and Italian ryegrass (Lolium multiflorum Lam.) and regeneration of mature cybrids. In Vitro Cell Dev Biol Plant 42:179–187CrossRefGoogle Scholar
  54. Goormachtig S, ValerioLepiniec M, Szczyglowski K, VanMontagu M, Holsters M, deBruijn FJ (1995) Use of differential display to identify novel Sesbania rostrata genes enhanced by Azorhizobium caulinodans infection. Mol Plant Microbe Interact 8:816–824PubMedGoogle Scholar
  55. Green CD, Simons JF, Taillon BE, Lewin DA (2001) Open systems: panoramic views of gene expression. J Immunol Methods 250:67–79PubMedCrossRefGoogle Scholar
  56. Grosser JW, Ollitrault P, Olivares-Fuster O (2000) Somatic hybridization in citrus: an effective tool to facilitate variety improvement. In Vitro Cell Dev Biol Plant 36:434–449CrossRefGoogle Scholar
  57. Grumet R, Sanford JC, Johnston SA (1987) Pathogen-derived resistance to viral infection using a negative regulatory molecule. Virology 161:561–569PubMedCrossRefGoogle Scholar
  58. Guha S, Maheshwari SC (1964) In vitro production of embryos from anthers of Datura. Nature 204:497CrossRefGoogle Scholar
  59. Guha S, Maheshwari SC (1966) Cell division and differentiation of embryos in pollen grains of Datura in vitro. Nature 212:97CrossRefGoogle Scholar
  60. Gurel E, Gurel S, Lemaux PG (2008) Biotechnology applications for sugar beet. Crit Rev Plant Sci 27:108–140CrossRefGoogle Scholar
  61. Hamada H, Matsumura H, Tomita R, Terauchi R, Suzuki K, Kobayashi K (2008) SuperSAGE revealed different classes of early resistance response genes in Capsicum chinense plants harboring L-3-resistance gene infected with Pepper mild mottle virus. J Gen Plant Pathol 74:313–321CrossRefGoogle Scholar
  62. Hamrouni L, Ben Abdallah F, Abdelly C, Ghorbel A (2008) In vitro culture: a simple and efficient way for salt-tolerant grapevine genotype selection. Comptes Rendus Biologies 331:152–163PubMedCrossRefGoogle Scholar
  63. Hancock JF. 2004. Plant evolution and the origin of crop species. CABI, Wallingford, Oxon, UKGoogle Scholar
  64. He SZ, Han YF, Wang YP, Zhai H, Liu QC (2009) In vitro selection and identification of sweetpotato (Ipomoea batatas (L.) Lam.) plants tolerant to NaCl. Plant Cell Tissue Organ Cult 96:69–74CrossRefGoogle Scholar
  65. Hermsen JGT, Verdenius J (1973) Selection from Solanum tuberosum group Phureja of genotypes combining high frequency haploid induction with homozygosity for embryo-spot. Euphytica 22:244–259CrossRefGoogle Scholar
  66. Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282PubMedCrossRefGoogle Scholar
  67. Higuchi R, Fockler C, Dollinger G, Watson R (1993) Kinetic PCR analysis - Real-time monitoring of DNA amplification reactions. Bio-Technology 11:1026–1030PubMedGoogle Scholar
  68. Holzberg S, Brosio P, Gross C, Pogue GP (2002) Barley stripe mosaic virus-induced gene silencing in a monocot plant. Plant J 30:315–327PubMedCrossRefGoogle Scholar
  69. Hooykaas PJJ, Klapwijk PM, Nuti MP, Schilperoort RA, Rorsch A (1977) Transfer of Agrobacterium tumefaciens Ti plasmid to avirulent agrobacteria and to Rhizobium ex planta. J Gen Microbiol 98:477–484Google Scholar
  70. Horvath H, Jensen LG, Wong OT, Kohl E, Ullrich SE, Cochran J, Kannangara CG, von Wettstein D (2001) Stability of transgene expression, field performance and recombination breeding of transformed barley lines. Theor Appl Genet 102:1–11CrossRefGoogle Scholar
  71. Houde M, Diallo A (2008) Identification of genes and pathways associated with aluminum stress and tolerance using transcriptome profiling of wheat near-isogenic lines. BMC Genomics 9:doi:10.1186/1471-2164-9-400Google Scholar
  72. Huang J, Wang MM, Bao YM, Sun SJ, Pan LJ, Zhang HS (2008) SRWD: a novel WD40 protein subfamily regulated by salt stress in rice (Oryza sativa L.). Gene 424:71–79PubMedCrossRefGoogle Scholar
  73. Huetteman CA, Preece JE (1993) Thidiazuron – a potent cytokinin for woody plant tissue culture. Plant Cell Tissue Organ Cult 33:105–119CrossRefGoogle Scholar
  74. Ideker T, Galitski T, Hood L (2001) A new approach to decoding life: systems biology. Annu Rev Genomics Hum Genet 2:343–372PubMedCrossRefGoogle Scholar
  75. Iida A, Morikawa H, Yamada Y (1990) Stable transformation of cultured tobacco cells by DNA-coated gold particles accelerated by gas pressure-driven particle gun. Appl Microbiol Biotechnol 33:560–563CrossRefGoogle Scholar
  76. Irian S, Xu P, Dai XB, Zhao PX, Roossinck MJ (2007) Regulation of a virus-induced lethal disease in tomato revealed by LongSAGE analysis. Mol Plant Microbe Interact 20:1477–1488PubMedCrossRefGoogle Scholar
  77. Ivashuta S, Imai R, Uchiyama K, Gau M (1999) The coupling of differential display and AFLP approaches for nonradioactive mRNA fingerprinting. Mol Biotechnol 12:137–141PubMedCrossRefGoogle Scholar
  78. Jain SM (2001) Tissue culture-derived variation in crop improvement. Euphytica 118:153–166CrossRefGoogle Scholar
  79. Jansen RC, Nap JP (2001) Genetical genomics: the added value from segregation. Trends Genet 17:388–391PubMedCrossRefGoogle Scholar
  80. Jayaraman A, Puranik S, Rai NK, Vidapu S, Sahu PP, Lata C, Prasad M (2008) cDNA-AFLP analysis reveals differential gene expression in response to salt stress in foxtail millet (Setaria italica L.). Mol Biotechnol 40:241–251PubMedCrossRefGoogle Scholar
  81. Jung SH, Lee JY, Lee DH (2003) Use of SAGE technology to reveal changes in gene expression in Arabidopsis leaves undergoing cold stress. Plant Mol Biol 52:553–567PubMedCrossRefGoogle Scholar
  82. Kang MS, Subudhi PK, Baisakh N and Priyadarshan PM. (2007). Crop breeding methodologies: classic and modern. In: Kang MS and Priyadarshan PM (eds) Breeding major food staples. Blackwell, Oxford, UK, pp 5–40Google Scholar
  83. Karadimova M, Djambova G (1993) Increased NaCl-tolerance in wheat (Triticum aestivum L. and T. durum Desf.) through in vitro selection. In Vitro Cell Dev Biol Plant 29:180–182Google Scholar
  84. Karp A (1995) Somaclonal variation as a tool for crop improvement. Euphytica 85:295–302CrossRefGoogle Scholar
  85. Kasha KJ, Kao KN (1970) High frequency haploid production in barley (Hordeum vulgare L.). Nature 225:874–876PubMedCrossRefGoogle Scholar
  86. Kiekens R, Vercauteren A, Moerkerke B, Goetghebeur E, Van Den Daele H, Sterken R, Kuiper M, van Eeuwijk F, Vuylsteke M (2006) Genome-wide screening for cis-regulatory variation using a classical diallel crossing scheme. Nucl Acids Res 34:3677–3686PubMedCrossRefGoogle Scholar
  87. Kiiskinen M, Korhonen M, Kangasjarvi J (1997) Isolation and characterization of cDNA for a plant mitochondrial phosphate translocator (Mpt1): ozone stress induces Mpt1 mRNA accumulation in birch (Betula pendula Roth). Plant Mol Biol 35:271–279PubMedCrossRefGoogle Scholar
  88. Kinoshita T, Mori K (1991) Somaclonal selection of physiological mutants through rice cell culture. Cereal Res Commun 19:131–164Google Scholar
  89. Klein DT, Klein RM (1953) Transmittance of tumor-inducing ability to avirulent crown gall and related bacteria. J Bacteriol 66:220–228PubMedGoogle Scholar
  90. Klein TM, Fromm M, Weissinger A, Tomes D, Schaaf S, Sletten M, Sanford JC (1988a) Transfer of foreign genes into intact maize cells with high velocity microprojectiles. Proc Natl Acad Sci USA 85:4305–4309PubMedCrossRefGoogle Scholar
  91. Klein TM, Harper EC, Svab Z, Sanford JC, Fromm ME, Maliga P (1988b) Stable genetic transformation of intact Nicotiana cells by the particle bombardment process. Proc Natl Acad Sci USA 85:8502–8505PubMedCrossRefGoogle Scholar
  92. Kloosterman B, Vorst O, Hall RD, Visser RGF, Bachem CW (2005) Tuber on a chip: differential gene expression during potato tuber development. Plant Biotechnol J 3:505–519PubMedCrossRefGoogle Scholar
  93. Krikorian AD, Berquam DL (1969) Plant cell and tissue cultures – role of Haberlandt. Bot Rev 35:59–67CrossRefGoogle Scholar
  94. Krishnaswamy S, Sanjeeva S, Mohammadi M, Rahman M, Deyholos M, Kav N (2008) Transcriptional profiling of pea ABR17 mediated changes in gene expression in Arabidopsis thaliana. BMC Plant Biol 8. doi:10.1186/1471-2229-8-91Google Scholar
  95. Kuhn E (2001) From library screening to microarray technology: strategies to determine gene expression profiles and to identify differentially regulated genes in plants. Ann Bot 87:139–155CrossRefGoogle Scholar
  96. Kumagai MH, Donson J, Dellacioppa G, Harvey D, Hanley K, Grill LK (1995) Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proc Natl Acad Sci USA 92:1679–1683PubMedCrossRefGoogle Scholar
  97. Kwiatkowska D (2008) Flowering and apical meristem growth dynamics. J Exp Bot 59:187–201PubMedCrossRefGoogle Scholar
  98. Lang P, Zhang CK, Ebel RC, Dane F, Dozier WA (2005) Identification of cold acclimated genes in leaves of Citrus unshiu by mRNA differential display. Gene 359:111–118PubMedCrossRefGoogle Scholar
  99. Lao M, Arencibia AD, Carmona ER, Acevedo R, Rodriguez E, Leon O, Santana I (2008) Differential expression analysis by cDNA-AFLP of Saccharum spp. after inoculation with the host pathogen Sporisorium scitamineum. Plant Cell Rep 27:1103–1111PubMedCrossRefGoogle Scholar
  100. Larkin PJ, Scowcroft WR (1981) Somaclonal variation – A novel source of variability from cell cultures for plant improvement. Theor Appl Genet 60:197–214CrossRefGoogle Scholar
  101. Lefrancois C, Chupeau Y, Bourgin JP (1993) Sexual and somatic hybridization in the genus Lycopersicon. Theor Appl Genet 86:533–546CrossRefGoogle Scholar
  102. Li H, Zhang P, Zha X, Xia X, He Z (2007) Isolation of differentially expressed genes from wheat cultivars Jinan 17 and Yumai 34 with good bread quality under heat stress during grain filling stage. Acta Agronomica Sinica 33:1644–1653Google Scholar
  103. Liang P, Pardee AB (1992) Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257:967–971PubMedCrossRefGoogle Scholar
  104. Liu H, Zhang H, Tan Z, Huang Y (2007) Isolation and expression of genes involved in tolerance. J Maize Sci 15:26–30Google Scholar
  105. Liu JH, Xu XY, Deng XX (2005) Intergeneric somatic hybridization and its application to crop genetic improvement. Plant Cell Tissue Organ Cult 82:19–44CrossRefGoogle Scholar
  106. Lockhart DJ, Dong HL, Byrne MC, Follettie MT, Gallo MV, Chee MS, Mittmann M, Wang CW, Kobayashi M, Horton H, Brown EL (1996) Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol 14:1675–1680PubMedCrossRefGoogle Scholar
  107. Long TA, Rady SM, Benfey PN (2008) Systems approaches to identifying gene regulatory networks in plants. Annu Rev Cell Dev Biol 24:81–103PubMedCrossRefGoogle Scholar
  108. Lu C-Y (1993) The use of thidiazuron in tissue culture. In Vitro Cellular Dev Biol Plant 29P:92–96CrossRefGoogle Scholar
  109. Lu M, Li X, Chen J, Chen L, Qian C (2005) Study on chilling tolerance of cucumber during germination and expression of lysine decarboxylase gene. Scientia Agricultura Sinica 38:2492–2495Google Scholar
  110. Luhs W, Friedt W (1994) Present state and prospects of breeding rapeseed (Brassica napus) with a maximum erucic acid content for industrial applications. Fett Wissenschaft Technologie – Fat Sci Technol 96:137–146Google Scholar
  111. Lynch PT, Davey MR, Power JB (1993) Plant protoplast fusion and somatic hybridization. Methods Enzymol 221:379–393CrossRefGoogle Scholar
  112. Malatrasi M, Close TJ, Marmiroli N (2002) Identification and mapping of a putative stress response regulator gene in barley. Plant Mol Biol 50:143–152PubMedCrossRefGoogle Scholar
  113. Mao CZ, Yi K, Yang L, Zheng BS, Wu YR, Liu FY, Wu P (2004) Identification of aluminium-regulated genes by cDNA-AFLP in rice (Oryza sativa L.): aluminium-regulated genes for the metabolism of cell wall components. J Exp Bot 55:137–143PubMedCrossRefGoogle Scholar
  114. Maqbool A, Zahur M, Irfan M, Younas M, Barozai K, Rashid B, Husnain T, Riazuddin S (2008) Identification and expression of six drought-responsive transcripts through differential display in desi cotton (Gossypium arboreum). Mol Biol 42:492–498CrossRefGoogle Scholar
  115. Marcotrigiano M (1997) Chimeras and variegation: Patterns of deceit. Hortscience 32:773–784Google Scholar
  116. McCallum CM, Comai L, Greene EA, Henikoff S (2000) Targeting induced local lesions in genomes (TILLING) for plant functional genomics. Plant Physiol 123:439PubMedCrossRefGoogle Scholar
  117. Mckinney HH (1927) Factors affecting certain properties of a mosaic virus. J Agric Res 35:1–12Google Scholar
  118. Mckinney HH (1929) Mosaic diseases in the Canary Islands, west Africa, and Gibraltar. J Agric Res 39:557–578Google Scholar
  119. Mckinney HH (1937) Virus mutation and the gene concept. J Hered 28:51–57Google Scholar
  120. Millam S, Payne LA, Mackay GR (1995) The integration of protoplast fusion-derived material into a potato breeding program – A review of progress and problems. Euphytica 85:451–455CrossRefGoogle Scholar
  121. Morikawa H, Iida A, Yamada Y (1989) Transient expression of foreign genes in plant cells and tissues obtained by a simple biolistic device (particle gun). Appl Microbiol Biotechnol 31:320–322CrossRefGoogle Scholar
  122. Muangprom A, Mauriera I, Osborn TC (2006) Transfer of a dwarf gene from Brassica rapa to oilseed B. napus, effects on agronomic traits, and development of a ‘perfect’ marker for selection. Mol Breed 17:101–110CrossRefGoogle Scholar
  123. Muller HJ (1927) Artificial transmutation of the gene. Science 66:84–87PubMedCrossRefGoogle Scholar
  124. Muller HJ (1928) The production of mutations by x-rays. Proc Natl Acad Sci USA 14:714–726PubMedCrossRefGoogle Scholar
  125. Mullis KB, Faloona FA (1987) Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol 155:335–350PubMedCrossRefGoogle Scholar
  126. Murthy BNS, Murch SJ, Saxena PK (1998) Thidiazuron: a potent regulator of in vitro plant morphogenesis. In Vitro Cell Dev Biol Plant 34:267–275CrossRefGoogle Scholar
  127. Nei M (1963) Efficiency of haploid method of plant breeding. Heredity 18:95–100CrossRefGoogle Scholar
  128. Oard JH, Paige DF, Simmonds JA, Gradziel TM (1990) Transient gene expression in maize, rice and wheat cells using an airgun apparatus. Plant Physiol 92:334–339PubMedCrossRefGoogle Scholar
  129. Oerke E-C, Dehne H-W, Schönbeck F and Weber A. 1994. Crop production and crop protection: estimated losses in major food and cash crops. Elsevier, Amsterdam.Google Scholar
  130. Orczyk W, Przetakiewicz J, Nadolska-Orczyk A (2003) Somatic hybrids of Solanum tuberosum – application to genetics and breeding. Plant Cell Tissue Organ Cult 74:1–13CrossRefGoogle Scholar
  131. Petolino JF, Hopkins NL, Kosegi BD, Skokut M (2000) Whisker-mediated transformation of embryogenic callus of maize. Plant Cell Rep 19:781–786CrossRefGoogle Scholar
  132. Phillips RL, Kaeppler SM, Olhoft P (1994) Genetic instability of plant tissue cultures – Breakdown of normal controls. Proc Natl Acad Sci USA 91:5222–5226PubMedCrossRefGoogle Scholar
  133. Pofelis S, Le H, Grant WF (1992) The development of sulfonylurea herbicide-resistant birdsfoot trefoil (Lotus corniculatus) plants from in vitro selection. Theor Appl Genet 83:480–488CrossRefGoogle Scholar
  134. Potokina E, Caspers M, Prasad M, Kota R, Zhang H, Sreenivasulu N, Wang M, Graner A (2004) Functional association between malting quality trait components and cDNA array based expression patterns in barley (Hordeum vulgare L.). Mol Breed 14:153–170CrossRefGoogle Scholar
  135. Queiros F, Fidalgo F, Santos I, Salema R (2007) In vitro selection of salt tolerant cell lines in Solanum tuberosum L. Biol Plant 51:728–734CrossRefGoogle Scholar
  136. Raghavan V (1985) The applications of embryo rescue in agriculture. International Rice Research Institute Biotechnology in International Agricultural Research; Inter-Center Seminar on International Agricultural Research Centers and Biotechnology, Manila, Philippines, Apr 23–27, 1984 Viii+435P International Rice Research Institute pp 189–198Google Scholar
  137. Raghavan V (1986) Embryogenesis in angiosperms. A developmental and experimental study. Cambridge University Press, Cambridge, UKGoogle Scholar
  138. Rajesh P, Gupta V, Ranjekar P, Muehlbauer F (2003) Functional genome analysis using DDRT for ascochyta blight resistance in chickpea. International Chickpea and Pigeonpea Newsletter 10:35–37Google Scholar
  139. Rani V, Raina SN (2000) Genetic fidelity of organized meristem-derived micropropagated plants: A critical reappraisal. In Vitro Cell Dev Biol Plant 36:319–330CrossRefGoogle Scholar
  140. Ratcliff F, Harrison BD, Baulcombe DC (1997) A similarity between viral defense and gene silencing in plants. Science 276:1558–1560PubMedCrossRefGoogle Scholar
  141. Reinartz J, Bruyns E, Lin JZ, Burcham T, Brenner S, Bowen B, Kramer M, Woychik R (2002) Massively parallel signature sequencing (MPSS) as a tool for in-depth quantitative gene expression profiling in all organisms. Brief Funct Genomics Proteomics 1:95–104CrossRefGoogle Scholar
  142. Robinson SJ, Parkin IAP (2008) Differential SAGE analysis in Arabidopsis uncovers increased transcriptome complexity in response to low temperature. BMC Genomics 9. doi:10.1186/1471-2164-9-434Google Scholar
  143. Rodrangboon P, Pongtongkam P, Suputtitada S, Adachi T (2002) Abnormal embryo development and efficient embryo rescue in interspecific hybrids, Oryza sativa × O-minuta and O-sativa × O-officinalis. Breed Sci 52:123–129CrossRefGoogle Scholar
  144. Rout GR, Mohapatra A, Jain SM (2006) Tissue culture of ornamental pot plant: A critical review on present scenario and future prospects. Biotechnol Adv 24:531–560PubMedCrossRefGoogle Scholar
  145. Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Erlich HA (1988) Primer directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491PubMedCrossRefGoogle Scholar
  146. Sanford JC (1990) Biolistic plant transformation. Physiologia Plantarum 79:206–209CrossRefGoogle Scholar
  147. Sanford JC, Johnston SA (1985) The concept of parasite-derived resistance – Deriving desistance genes from the parasites own genome. J Theor Biol 113:395–405CrossRefGoogle Scholar
  148. Sarita C, Yu K (2006) Gene profiling of plants with cDNA-AFLP. Floriculture, ornamental and plant biotechnology 489–497Google Scholar
  149. Sarrafi A, Amrani N, Alibert G (1994) Haploid regeneration from tetraploid wheat using maize pollen. Genome 37:176–178PubMedCrossRefGoogle Scholar
  150. Schadt EE, Monks SA, Drake TA, Lusis AJ, Che N, Colinayo V, Ruff TG, Milligan SB, Lamb JR, Cavet G, Linsley PS, Mao M, Stoughton RB, Friend SH (2003) Genetics of gene expression surveyed in maize, mouse and man. Nature 422:297–302PubMedCrossRefGoogle Scholar
  151. Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470PubMedCrossRefGoogle Scholar
  152. Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM (2000) Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci USA 97:11655–11660PubMedCrossRefGoogle Scholar
  153. Sharma DR, Kaur R, Kumar K (1996) Embryo rescue in plants – A review. Euphytica 89:325–337Google Scholar
  154. Shi C, Uzarowska A, Ouzunova M, Landbeck M, Wenzel G, Lubberstedt T (2007) Identification of candidate genes associated with cell wall digestibility and eQTL (expression quantitative trait loci) analysis in a Flint × Flint maize recombinant inbred line population. BMC Genomics 8Google Scholar
  155. Shrawat AK, Lorz H (2006) Agrobacterium-mediated transformation of cereals: a promising approach crossing barriers. Plant Biotechnol J 4:575–603PubMedCrossRefGoogle Scholar
  156. Simoes-Araujo JL, Alves-Ferreira M, Rumjanek NG, Margis-Pinheiro M (2008) VuNIP1 (NOD26-like) and VuHSP17.7 gene expression are regulated in response to heat stress in cowpea nodule. Environ Exp Bot 63:256–265CrossRefGoogle Scholar
  157. Sleper DA and Poehlman JM. (2006). Plant breeders and their work. Breeding field crops, 5th edn. Blackwell, Ames, Iowa, USA, pp 3–16Google Scholar
  158. Stadler LJ (1928) Mutations in barley induced by X-rays and radium. Science 68:186–187PubMedCrossRefGoogle Scholar
  159. Steiner B, Schieszl K, Litwicka EP, Kurz H, Lemmens M, Jia H, Muehlbauer G, Buerstmayr H (2008) Gene expression analysis of related wheat lines with contrasting levels of head blight resistance after Fusarium graminearum inoculation. Cereal Res Commun 36:267–269CrossRefGoogle Scholar
  160. Strauss A, Gebhardt C and King PJ. (1980). Methods for selection of drug-resistant plant cell cultures. In: Ingram DS, Helgeson JP (eds) Tissue culture methods for plant pathologists. Blackwell, Oxford, UK, pp 239–248Google Scholar
  161. Svabova L, Lebeda A (2005) In vitro selection for improved plant resistance to toxin-producing pathogens. J Phytopathol 153:52–64CrossRefGoogle Scholar
  162. Szymkowiak EJ, Sussex IM (1996) What chimeras can tell us about plant development. Annu Rev Plant Physiol Plant Mol Biol 47:351–376PubMedCrossRefGoogle Scholar
  163. Taregyan MR, Mortimer AM, Putwain PD, Collin HA (2001) Selection for resistance to the herbicide imazethapyr in somaclones of soyabean. Weed Res 41:143–154CrossRefGoogle Scholar
  164. Thieme R, Rakosy-Tican E, Gavrilenko T, Antonova O, Schubert J, Nachtigall M, Heimbach U, Thieme T (2008) Novel somatic hybrids (Solanum tuberosum L. plus Solanum tarnii) and their fertile BC1 progenies express extreme resistance to potato virus Y and late blight. Theor Appl Genet 116:691–700PubMedCrossRefGoogle Scholar
  165. Tian LL, Wang YJ (2008) Seedless grape breeding for disease resistance by using embryo rescue. Vitis 47:15–19Google Scholar
  166. Tikhenko N, Rutten T, Voylokov A, Houben A (2008) Analysis of hybrid lethality in F-1 wheat-rye hybrid embryos. Euphytica 159:367–375CrossRefGoogle Scholar
  167. Tooke F, Battey N (2003) Models of shoot apical meristem function. New Phytol 159:37–52CrossRefGoogle Scholar
  168. Torney F, Trewyn BG, Lin VSY, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300PubMedCrossRefGoogle Scholar
  169. Touraev A, Forster BP and Jain SM. 2009. Advances in haploid production in higher plants. Springer, Heidelberg, GermanyCrossRefGoogle Scholar
  170. Unver T, Bozkurt O, Akkaya MS (2008) Identification of differentially expressed transcripts from leaves of the boron tolerant plant Gypsophila perfoliata L. Plant Cell Rep 27:1411–1422PubMedCrossRefGoogle Scholar
  171. van Harten AM. 1998. Mutation breeding:theory and practical applications. Cambridge University Press, Cambridge, UKGoogle Scholar
  172. van Kammen A (1997) Virus-induced gene silencing in infected and transgenic plants. Trends Plant Sci 2:409–411CrossRefGoogle Scholar
  173. Vazquez AM (2001) Insight into somaclonal variation. Plant Biosyst 135:57–62CrossRefGoogle Scholar
  174. Veen R, Dulk-Ras H, Bisseling T, Schilperoort R, Hooykaas P (1988) Crown gall tumor and root nodule formation by the bacterium Phyllobacterium myrsinacearum after the introduction of an Agrobacterium Ti plasmid or a Rhizobium Sym plasmid. Mol Plant Microbe Interact 1:231–234Google Scholar
  175. Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270:484–487PubMedCrossRefGoogle Scholar
  176. Ventelon-Debout M, Tranchant-Dubreuil C, Nguyen TTH, Bangratz M, Sire C, Delseny M, Brugidou C (2008) Rice Yellow Mottle Virus stress responsive genes from susceptible and tolerant rice genotypes. BMC Plant Biol 8. doi:10.1186/1471-2229-8-26Google Scholar
  177. Veres G, Gibbs RA, Scherer SE, Caskey CT (1987) The molecular basis of the sparse fur mouse mutation. Science 237:415–417PubMedCrossRefGoogle Scholar
  178. Visioli G, Maestri E, Marmiroli N (1997) Differential display-mediated isolation of a genomic sequence for a putative mitochondrial LMW HSP specifically expressed in condition of induced thermotolerance in Arabidopsis thaliana (L) Heynh. Plant Mol Biol 34:517–527PubMedCrossRefGoogle Scholar
  179. Vuylsteke M, van Eeuwijk F (2008) The use of general and specific combining abilities in a context of gene expression relevant to plant breeding. Euphytica 161:115–122CrossRefGoogle Scholar
  180. Waara S, Glimelius K (1995) The potential of somatic hybridization in crop breeding. Euphytica 85:217–233CrossRefGoogle Scholar
  181. Wagner A (2002) Estimating coarse gene network structure from large-scale gene perturbation data. Genome Res 12:309–315PubMedCrossRefGoogle Scholar
  182. Walter S, Brennan JM, Arunachalam C, Ansari KI, Hu XJ, Khan MR, Trognitz F, Trognitz B, Leonard G, Egan D, Doohan FM (2008) Components of the gene network associated with genotype-dependent response of wheat to the Fusarium mycotoxin deoxynivalenol. Funct Integr Genomics 8:421–427PubMedCrossRefGoogle Scholar
  183. Wang JPP, Bughrara SS (2007) Monitoring of gene expression profiles and identification of candidate genes involved in drought responses in Festuca mairei. Mol Genet Genomics 277:571–587PubMedCrossRefGoogle Scholar
  184. Wang YP, Sonntag K, Rudloff E (2003) Development of rapeseed with high erucic acid content by asymmetric somatic hybridization between Brassica napus and Crambe abyssinica. Theor Appl Genet 106:1147–1155PubMedGoogle Scholar
  185. Wang YP, Sonntag K, Rudloff E, Chen JM (2005) Intergeneric somatic hybridization between Brassica napus L. and Sinapis alba L. J Integr Plant Biol 47:84–91CrossRefGoogle Scholar
  186. Wang YP, Sonntag K, Rudloff E, Groeneveld I, Gramenz J, Chu CC (2006) Production and characterization of somatic hybrids between Brassica napus and Raphanus sativus. Plant Cell Tissue Organ Cult 86:279–283CrossRefGoogle Scholar
  187. Weiberg A, Pohler D, Morgenstern B, Karlovsky P (2008) Improved coverage of cDNA-AFLP by sequential digestion of immobilized cDNA. BMC Genomics 9. doi:10.1186/1471-2164-9-480Google Scholar
  188. Weissinger A, Tomes D, Sanford J, Kline T, Fromm M (1987) Microprojectile bombardment for maize transformation. In Vitro Cell Dev Biol 23:A75CrossRefGoogle Scholar
  189. West MAL, Kim K, Kliebenstein DJ, van Leeuwen H, Michelmore RW, Doerge RW, Clair DAS (2007) Global eQTL mapping reveals the complex genetic architecture of transcript-level variation in Arabidopsis. Genetics 175:1441–1450PubMedCrossRefGoogle Scholar
  190. Winicov I (1996) Characterization of rice (Oryza sativa L) plants regenerated from salt-tolerant cell lines. Plant Sci 113:105–111CrossRefGoogle Scholar
  191. Yamakawa H, Hirose T, Kuroda M, Yamaguchi T (2007) Comprehensive expression profiling of rice grain filling-related genes under high temperature using DNA microarray. Plant Physiol 144:258–277PubMedCrossRefGoogle Scholar
  192. Yang DL, Li W, Li S, Yang XL, Wu JL, Cao ZY (2007) In vitro embryo rescue culture of F-1 progenies from crosses between diploid and tetraploid grape varieties. Plant Growth Reg 51:63–71CrossRefGoogle Scholar
  193. Yih TC, Al-Fandi M (2006) Engineered nanoparticles as precise drug delivery systems. J Cell Biochem 97:1184–1190PubMedCrossRefGoogle Scholar
  194. Yu CY, Chun SC, Lim JD, Kim SH, Kang WH, Chung IM (2004) Tetrapyrrole accumulation in in vitro selected somaclones of acifluorfen-tolerant Solanum ptycanthum Dun. Plant Cell Tissue Organ Cult 76:167–174CrossRefGoogle Scholar
  195. Yu X, Lu X, Chen Y, Li d, Yao J, Zhang H (2007) Differential gene expression of Senecio × hybridus under heat stress. J Agric Biotechnol 15:459–463Google Scholar
  196. Zhang BH, Liu F, Wang QL, Zhang WS (2001) Selection for salt tolerance in cotton tissue culture and plant regeneration from NaCl-tolerant embryogenic callus. Isr J Plant Sci 49:187–191CrossRefGoogle Scholar
  197. Zhang C, Chen SY (1996) Analysis of genes specifically expressed under salt stress in salt-tolerant mutant of rice by using DDRT-PCR technique. Sci Chin Ser C-Life Sci 39:385–394Google Scholar
  198. Zhang JJ, He ZH, Tian H, Zhu GH, Peng XX (2007) Identification of aluminium-responsive genes in rice cultivars with different aluminium sensitivities. J Exp Bot 58:2269–2278PubMedCrossRefGoogle Scholar
  199. Zhu JW, Xu YP, Zhang ZX, Cao WY, Cai XZ (2008) Transcript profiling for Avr4/Cf-4- and Avr9/Cf-9-dependent defence gene expression. Eur J Plant Pathol 122:307–314CrossRefGoogle Scholar
  200. Zhu YS, Chen BT, Yu SW, Zhang DP, Zhang XQ, Yan QS (2004) Transfer of bacterial blight resistance from Oryza meyeriana to O. sativa L. by asymmetric somatic hybridization. Chin Sci Bull 49:1481–1484CrossRefGoogle Scholar
  201. Zhuang YL, Ren GJ, Zhu Y, Hou GH, Qu X, Li ZX, Yue GD, Zhang JR (2008) Transcriptional profiles of immature ears and tassels in maize at early stage of water stress. Biologia Plantarum 52:754–758CrossRefGoogle Scholar
  202. Zwiegelaar M, Dubery IA (2006) Early activation of cell wall strengthening-related gene transcription in cotton by a Verticillium dahliae elicitor. S Afr J Bot 72:467–472CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Seedhabadee Ganeshan
    • 1
  • Pallavi Sharma
    • 1
  • Ravindra N. Chibbar
    • 1
    Email author
  1. 1.Department of Plant SciencesCollege of Agriculture and Bioresources, University of SaskatchewanSaskatoonCanada

Personalised recommendations