Skip to main content

Marker-Free Targeted Transformation

  • Chapter
  • First Online:
Molecular Techniques in Crop Improvement

Abstract

There are many transformation methods available for stable integration of a desirable gene into plant cells. In transformation, variable numbers of desired genes together with marker genes are randomly inserted into the plant genome. Therefore, cumbersome screening procedures are required to identify transgenic plants with a single copy of transgenes at appropriate expression levels. However, the lack of reproducibility of expression levels limits studies of both the gene expression and physiological effects of transgenes. And remaining of marker genes precludes retransformation with the same marker system and can raise safety and public concerns. The targeting approach is the best way to solve this problem. In this chapter, we focus on the application of site-specific recombination systems for introducing a desirable gene into a predefined site in a plant genome. Furthermore, we discuss an approach for removing a marker gene from targeted transgenic plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albert H, Dale E-C, Lee E et al. (1995) Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome. Plant J 7:649–659

    Article  CAS  PubMed  Google Scholar 

  • Birch R-G (1997) Plant transformation: problems and strategies for practical application. Annu Rev Plant Physiol Plant Mol Biol 48:297–326

    Article  CAS  PubMed  Google Scholar 

  • Chawla C, Ariza-Nieto M, Wilson A-J et al. (2006) Transgene expression produced by biolistic-mediated site-specific gene integration is consistently inherited by the subsequent generations. Plant Biotechnol J 4:209–218

    Article  CAS  PubMed  Google Scholar 

  • Chilton M-D, Que Q (2003) Targeted integration of T-DNA into the tobacco genome at double-strand breaks: new insights on the mechanism of T-DNA integration. Plant Physiol 133:956–965

    Article  CAS  PubMed  Google Scholar 

  • Choi S, Begum D, Koshinsky H et al. (2000) A new approach for the identification and cloning of genes: the pBACwich system using Cre/lox site-specific recombination. Nucleic Acids Res 28:E19–E26

    Article  Google Scholar 

  • Day C-D, Lee E, Kobayashi J et al. (2000) Transgene integration into the same chromosome location can produce alleles that express at a predictable level, or alleles that are differentially silenced. Genes Dev 14:2869–2880

    Article  CAS  PubMed  Google Scholar 

  • De Buck S, Windels P, De Loose M et al. (2004) Single-copy T-DNAs integrated at different positions in the Arabidopsis genome display uniform and comparable B-glucuronidase accumulation levels. CMLS Cell Mol Life Sci 61:2632–2645

    Article  Google Scholar 

  • De Wilde C, Podevin N, Windels P et al. (2001) Silencing of antibody genes in plants with single-copy transgene inserts as a result of gene dosage effects. Mol Genet Genom 265:647–653

    Article  Google Scholar 

  • Ebinuma H, Nanto K (2007) Marker-free transgenic plants with a site-specific integrated copy produced by recombinase-mediated cassette exchange (RMCE). International Conference – Plant Tansformation Technologies (Abstract: pp 41). Vienna, Austria

    Google Scholar 

  • Ebinuma H, Sugita K, Matsunaga E et al. (1997) Selection of marker-free transgenic plants using the isopentenyl transferase gene. Proc Natl Acad Sci U S A 94:2117–2121

    Article  CAS  PubMed  Google Scholar 

  • Ebinuma H, Sugita K, Matsunaga E et al. (2001) Systems for the removal of a selection marker and their combination with a positive marker. Plant Cell Rep 20:383–392

    Article  CAS  Google Scholar 

  • Ebinuma H, Sugita K, Matsunaga E et al. (2004) Asexual production of marker-free transgenic aspen using MAT vector systems. In: Kumar S, Fladung M (eds) Molecular genetics and breeding of forest trees. Food Products, New York, pp 309–338

    Google Scholar 

  • Ebinuma H, Sugita K, Endo S et al. (2005) Elimination of marker genes from transgenic plants using MAT vector systems. In: Pena L (ed) Transgenic plants. Humana, New Jersey, pp 237–253

    Google Scholar 

  • Eszterhas S-K, Bouhassira E-E, Martin D-I et al. (2002) Transcriptional interference by independently regulated genes occurs in any relative arrangement of the genes and is influenced by chromosomal integration position. Mol Cell Biol 22(2):469–479

    Article  CAS  PubMed  Google Scholar 

  • Feng Y-Q, Seibler J, Alami R et al. (1999) Site-specific chromosomal integration in mammalian cells: highly efficient Cre recombinase-mediated cassette exchange. J Mol Biol 292:779–785

    Article  CAS  PubMed  Google Scholar 

  • Fukushige S, Sauer B (1992) Genomic targeting with a positive-selection lox integration vector allows highly reproducible gene expression in mammalian cells. Proc Natl Acad Sci U S A 89:7905–7909

    Article  CAS  PubMed  Google Scholar 

  • Feng Y-Q, Lorincz M-C, Fiering S et al. (2001) Position effects are influenced by the orientation of a transgene with respect to flanking chromatin. Mol Cell Biol 21(1):298–309

    Article  CAS  PubMed  Google Scholar 

  • Kim S-I, Veena, Gelvin S-B (2007) Genome-wide analysis of Agrobacterium T-DNA integration sites in the Arabidopsis genome generated under nonselective conditions. Plant J 51:779–791

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Fladung M (2001) Gene stability in transgenic aspen (Populus). II. Molecular characterization of variable expression of transgene in wild and hybrid aspen. Planta 213:731–740

    Article  CAS  PubMed  Google Scholar 

  • Kohli A, Twyman R-M, Abranches W et al. (2003) Transgene integration, organization and interaction in plants. Plant Mol Biol 52:247–258

    Article  CAS  PubMed  Google Scholar 

  • Louwerse J-D, Van Lier M-C-M, Van Der Steen et al. (2007) Stable recombinase-mediated cassette exchange in Arabidopsis using Agrobacterium tumefaciens. Plant Physiol 145:1282–1293

    Article  CAS  PubMed  Google Scholar 

  • Lyznik L-A, Gordon-Kamm W-J, Tao Y (2003) Site-specific recombination for genetic engineering in plants. Plant Cell Rep 21:925–932

    Article  CAS  PubMed  Google Scholar 

  • Maqbool S-B, Christou P (1999) Multiple traits of agronomic importance in transgenic indica rice plants analysis of transgene integration patterns, expression levels and stability. Mol Breed 5:471–480

    Article  Google Scholar 

  • Matsuzaki H, Nakajima R, Nishiyama J et al. (1990) Chromosome engineering in Saccharomyces cerevisiae by using a site-specific recombination system of a yeast plasmid. J Bact 172:610–618

    CAS  PubMed  Google Scholar 

  • Matzke M-A, Matzke A-J-M (1991) Differential inactivation and methylation of a transgene in plants by two suppressor loci containing homologous sequences. Plant Mol Biol 16:821–830

    Article  CAS  PubMed  Google Scholar 

  • Matzke M-A, Mette M-F (2000) Transgene silencing by the host genome defense: implications for the evolution of epigenetic control mechanism in plants and vertebrates. Plant Mol Biol 43:401–415

    Article  CAS  PubMed  Google Scholar 

  • Meyer P (2000) Transcriptional transgene silencing and chromatin component. Plant Mol Biol 43:221–234

    Article  CAS  PubMed  Google Scholar 

  • Nanto K, Ebinuma H (2007) Expression of a transgene exchanged by the recombinase-mediated cassette exchange (RMCE) method in plants. International Conference - Plant Tansformation Technologies (Abstract: pp 71) Vienna, Austria

    Google Scholar 

  • Nanto K, Ebinuma H (2008, on line: 2007) Marker-free site-specific integration plants. Transgenic Res 17:337–344

    Article  CAS  PubMed  Google Scholar 

  • Nanto K, Yamada-Watanabe K, Ebinuma H (2005) Agrobacterium-mediated RMCE approach for gene replacement. Plant Biotechnol J 3:203–214

    Article  CAS  PubMed  Google Scholar 

  • Nanto K, Sato K, Katayama Y, Ebinuma H (2009) Expression of a transgene exchanged by the recombinase-mediated cassette exchange (RMCE) method in plants. Plant Cell Rep 28:777–785

    Article  CAS  PubMed  Google Scholar 

  • O’Gorman S, Fox D-T, Wahl G-M (1991) Recombinase-mediated gene activation and site-specific integration in mammalian cells. Science 251:1351–1355

    Article  PubMed  Google Scholar 

  • Onouchi H, Yokoi K, Machida C et al. (1991) Operation of an efficient site-specific recombination system of Zygosaccharomyces rouxii in tobacco cells. Nucleic Acids Res 19:6373–6378

    Article  CAS  PubMed  Google Scholar 

  • Ow D-W (2002) Recombinase-directed plant transformation for the post-genomic era. Plant Mol Biol 48:183–200

    Article  CAS  PubMed  Google Scholar 

  • Schlaman H-R-M, Hooykaas P-J-J (1997) Effectiveness of the bacterial gene codA encoding cytosine deaminase as a negative selectable marker in Agrobacterium-mediated plant transformation. Plant J 11:1377–1385

    Article  CAS  Google Scholar 

  • Srivastava V, Ow D-W (2001) Biolistic mediated site-specific integration in rice. Mol Breed 8:345–350

    Article  CAS  Google Scholar 

  • Srivastava V, Ow D-W (2004) Marker-free site-specific gene integration in plants. Trends Biotech 22:627–629

    Article  CAS  Google Scholar 

  • Srivastava V, Ariza-Nieto M, Wilson A-J (2004) Cre-mediated site-specific gene integration for consistent transgene expression in rice. Plant Biotechnol J 2(2):169–179

    Article  CAS  PubMed  Google Scholar 

  • Sugita K, Matsunaga E, Ebinuma H (1999) Effective selection system for generating marker-free transgenic plants independent of sexual crossing. Plant Cell Rep 18:941–947

    Article  CAS  Google Scholar 

  • Tzfira T, Frankman L-R, Vaidya M et al. (2003) Site-specific integration of Agrobacterium tumefaciens T-DNA via doublestranded intermediates. Plant Physiol 133:1011–1023

    Article  CAS  PubMed  Google Scholar 

  • Vain P, James V-A, Worland B et al. (2002) Transgene behaviour across two generations in a large random population of transgenic rice plants produced by particle bombardment. Theor Appl Genet 105:878–889

    Article  CAS  PubMed  Google Scholar 

  • Vergunst A-C, Hooykaas P-J (1998) Cre/lox-mediated site-specific integration of Agrobacterium T-DNA in Arabidopsis thaliana by transient expression of cre. Plant Mol Biol 38:393–406

    Article  CAS  PubMed  Google Scholar 

  • Vergunst A-C, Jansen L-E, Hooykaas P-J (1998) Site-specific integration of Agrobacterium T-DNA in Arabidopsis thaliana mediated by Cre recombinase. Nucleic Acids Res 26:2729–2734

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyasu Ebinuma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ebinuma, H., Nanto, K. (2010). Marker-Free Targeted Transformation. In: Jain, S., Brar, D. (eds) Molecular Techniques in Crop Improvement. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2967-6_22

Download citation

Publish with us

Policies and ethics