Advertisement

Comparative Genomics in Crop Plants

  • Mehboob-ur-Rahman
  • Andrew H. Paterson
Chapter

Abstract

Angiosperms evolved from a common ancestral genome that incurred repeated duplications and many mutations in succeeding generations to result in the evolution of an array of plant species, setting the stage for the application of comparative genomic approaches to its descendant modern angiosperms. Presently, much genomic information including complete genome sequences from model crops is available, with partial genomic information for many other plant taxa shedding light on genome structure and gene repertoire. Comparative approaches permit inferences to be made regarding evolutionary consequences including rates of evolution of particular genes or families, differential gene loss or retention following duplications, and chromosomal rearrangements, collectively contributing to taxonomic, morphological, and physiological variation. The expanding genomic information for angiosperms may soon permit us to deduce ancestral genome karyotypes for each plant family, and perhaps even for the common ancestor of all angiosperms. Future availability of additional sequenced genomes coupled with complementary bioinformatics tools may help to redraw the plant phylogeny, identify the ancestral gene set for angiosperms and clarify the subsequent evolutionary history of these genes, and provide new insight into the causes and consequences of fluctuating genome size. Better understanding of relationships among different angiosperm genomes and their constituent genes will expedite goals ranging from isolation of genes and determination of their functions, to identifying DNA markers useful for marker-assisted breeding.

Keywords

Bacterial Artificial Chromosome Genome Duplication Rice Chromosome Plant Taxon Genome Sequence Information 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors wish to thank Higher Education Commission, Islamabad, Pakistan for providing funds to one of the authors Dr. Mehboob-ur-Rahman for spending 9 months as a postdoc in Plant Genome Mapping Laboratory, Univ Georgia Athens USA.

References

  1. Abdalla AM, Reddy OUK, El-Zik KM et al. (2001) Genetic diversity and relationships of diploid and tetraploid cottons revealed using AFLP. Theor Appl Genet 102:222–229CrossRefGoogle Scholar
  2. Adams KL, Cronn R, Percifield R et al. (2003) Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing. Proc Natl Acad Sci USA 100(8):4649–4654PubMedCrossRefGoogle Scholar
  3. Ahmad S, Zhang T, Noor-ul-Islam et al. (2007) Identifying genetic variation in Gossypium based on single nucleotide polymorphism. Pak J Bot 39:1245–1250Google Scholar
  4. Ahn S, Tanksley SD (1993) Comparative linkage maps of rice and maize genomes. Proc Natl Acad Sci 90:7980–7984PubMedCrossRefGoogle Scholar
  5. Akhunov ED, Akhunova AR, Linkiewicz AM et al. (2003) Synteny perturbations between wheat homoeologous chromosomes caused by locus duplications and deletions correlate with recombination rates along chromosome arms. Proc Natl Acad Sci USA 100:10836–10841PubMedCrossRefGoogle Scholar
  6. Al-Shehbaz IA (1973) The biosystematics of the genus Thelypodium (Cruciferae). Contributions to the Gray Herbarium, Harvard University 204:3–148Google Scholar
  7. Ané J, György BK, Brendan K et al. (2004) Medicago truncatula DMI1 required for bacterial and fungal symbioses in legumes. Science 303:1364–1367PubMedCrossRefGoogle Scholar
  8. Bailey CD, Koch MA, Mayer M et al. (2006) Toward a global phylogeny of the Brassicaceae. Mol Biol Evol 23(11):2142–2160PubMedCrossRefGoogle Scholar
  9. Bailey JA, Yavor AM, Massa HF et al. (2001) Segmental duplications: organization and impact within the current human genome project assembly. Genome Res 11:1005–1017PubMedCrossRefGoogle Scholar
  10. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297PubMedCrossRefGoogle Scholar
  11. Bates DM (1968) Generic relationships in the Malvaceae, tribe Malveae. Gentes Herbarum 10:117–135Google Scholar
  12. Bates DM, Blanchard OJ (1970) Chromosome numbers in the Malvales. II. New or otherwise noteworthy counts relevant to classification in the Malvaceae, tribe Malveae. Am J Bot 57:927–934CrossRefGoogle Scholar
  13. Beasley JO (1940) The production of polyploids in Gossypium. J Hered 31:39–48Google Scholar
  14. Beavis B, D.Gessler, Rhee S, Rokhsar D, Doreen M, Lukas M, Huala E, Lincoln S, Lawrence C (2005) Plant biology databases: a needs assessment, http://www.gramene.org/resources/plant_databases.pdf
  15. Bedell JA, Budiman MA, Nunberg A et al. (2005) Sorghum genome sequencing by methylation filtration. PLoS Biol 3(1):e13CrossRefGoogle Scholar
  16. Beilstein MA, Al-Shehbaz IA, Kellogg EA (2006) Brassicaceae phylogeny and trichome evolution. Am J Bot 93:607–619CrossRefGoogle Scholar
  17. Bennett MD, Leitch IJ (2003) Angiosperm DNA C-values database (release 4_0, Jan. 2003). http://www.rbgkew.org.uk/cval/homepage.html
  18. Bennett MD, Smith JB (1991) Philosophical transactions of the Royal Society B. Biol Sci B 334:309–354Google Scholar
  19. Bennetzen JL (2005) Transposable elements, gene creation and genome rearrangement in flowering plants. Curr Opin Genet Dev 15:621–627PubMedCrossRefGoogle Scholar
  20. Bennetzen J, Ma LJ (2003) The genetic colinearity of rice and other cereals based on genomic sequence analysis. Curr Opin Plant Biol 6:128–133PubMedCrossRefGoogle Scholar
  21. Bennetzen J, Ma J, Devos KM (2005) Mechanisms of recent genome size variation in flowering plants. Ann Bot 95:127–132PubMedCrossRefGoogle Scholar
  22. Benton MJ (1993) The Fossil Record 2. Chapman and Hall, New York, USAGoogle Scholar
  23. Blanc G, Barakat A, Guyot R et al. (2000) Extensive duplication and reshuffling in the Arabidopsis genome. Plant Cell 12:1093–1101PubMedCrossRefGoogle Scholar
  24. Blanc G, Wolfe KH (2004) Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. The Plant Cell 16:1667–1678Google Scholar
  25. Blanchette M, Green ED, Miller W et al. (2004) Reconstructing large regions of an ancestral mammalian genome in silico. Genome Res 14:2412–2423PubMedCrossRefGoogle Scholar
  26. Boivin K, Acarkan A, Mbulu R et al. (2004) The Arabidopsis genome sequence as a tool for genome analysis in Brassicaceae. A comparison of the Arabidopsis and Capsella rubella genomes. Plant Physiol 135:735–744PubMedCrossRefGoogle Scholar
  27. Bonierbale MD, Plaisted RL, Tanksley SD (1988) RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics 120:1095–1103PubMedGoogle Scholar
  28. Bortiri E, Jackson D, Hake S (2006) Advances in maize genomics: the emergence of positional cloning. Curr Opin Plant Biol 9:164–171PubMedCrossRefGoogle Scholar
  29. Boutin SR, Young ND, Olson T, Yu Z-H, Shoemaker R, Vallejos C (1995) Genome conservation among three legume genera detected with DNA markers. Genome 38:928–937PubMedCrossRefGoogle Scholar
  30. Bowers JE, Abbey C, Anderson S et al. (2003a) A high-density genetic recombination map of sequence-tagged sites for Sorghum, as a framework for comparative structural and evolutionary genomics of tropical grains and grasses. Genetics 165:367–386PubMedGoogle Scholar
  31. Bowers JE, Arias MA, Asher R et al. (2005) Comparative physical mapping links conservation of microsynteny to chromosome structure and recombination in grasses. Proc Natl Acad Sci USA 102:13206–13211PubMedCrossRefGoogle Scholar
  32. Bowers JE, Chapman BA, Rong J et al. (2003b) Unraveling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422:433–438PubMedCrossRefGoogle Scholar
  33. Brown MS (1980) Identification of the chromosomes of Gossypium hirsutum L. by means of translocations. J Hered 71:266–274Google Scholar
  34. Brubaker CL, Paterson AH, Wendel JF (1999) Comparative genetic mapping of allotetraploid cotton and its diploid progenitors. Genome 42:184–203CrossRefGoogle Scholar
  35. Buckler ES, Thornsberry JM (2002) Plant molecular diversity and applications to genomics: Genome studies and plant molecular genetics. Curr Opin Plant Biol 5:107–111PubMedCrossRefGoogle Scholar
  36. Buell CR, Yuan Q, Ouyang S et al. (2005) Sequence, annotation, and analysis of synteny between rice chromosome 3 and diverged grass species. Genome Res 15:1284–1291PubMedCrossRefGoogle Scholar
  37. Burke JM, Tang S, Knapp SJ et al. (2002) Genetic analysis of sunflower domestication. Genetics 161:1257–1267PubMedGoogle Scholar
  38. Burow MD, Simpson CE, Starr JL et al. (2001) Transmission genetics of chromatin from a synthetic amphidiploid to cultivated peanut (Arachis hypogaea L.): broadening the gene pool of a monophyletic polyploid species. Genetics 159:823–837PubMedGoogle Scholar
  39. Bustamante CD, Fledel-Alon A, Williamson S et al. (2005) Natural selection on protein-coding genes in the human genome. Nature 437:1153–1157PubMedCrossRefGoogle Scholar
  40. Cai HW, Morishima H (2002) QTL clusters reflect character associations in wild and cultivated rice. Theor Appl Genet 14:1217–1228Google Scholar
  41. Caicedo AL, Purugganan MD (2005) Comparative plant genomics. Frontiers and prospects. Plant Physiol 138(2):545–547PubMedCrossRefGoogle Scholar
  42. Canaran P, Buckler ES, Glaubitz JC, Stein L, Sun Q, Zhao W, Ware D (2008) Panzea: an update on new content and features. Nucleic Acids Res 36:1041–1043CrossRefGoogle Scholar
  43. Cannon SB, Sterck L, Rombauts S et al. (2006) Legume genome evolution viewed through the Medicago truncatula and Lotus japonicus genomes. Proc Natl Acad Sci USA 103:14959–14964PubMedCrossRefGoogle Scholar
  44. Casasoli M, Derory J, Morera-Dutrey C et al. (2006) Comparison of quantitative trait loci for adaptive traits between oak and chestnut based on an expressed sequence tag consensus map. Genetics 172:533–546PubMedCrossRefGoogle Scholar
  45. Chao S, Sharp PJ, Worland AJ et al. (1989) RFLP-based genetic maps of wheat homoeologous group 7 chromosomes. Theor Appl Genet 78:495–504CrossRefGoogle Scholar
  46. Chapman BA, Bowers JE, Feltus FA et al. (2006) Buffering of crucial functions by paleologous duplicated genes may contribute cyclicality to angiosperm genome duplication. Proc Natl Acad Sci USA 103:2730–2735PubMedCrossRefGoogle Scholar
  47. Chardon F, Virlon B, Moreau L et al. (2004) Genetic architecture of flowering time in maize as inferred from QTL meta-analysis and synteny conservation with the rice genome. Genetics 162:2169–2185CrossRefGoogle Scholar
  48. Chen M, SanMiguel P, Bennetzen JL (1998) Sequence organization and conservation in sh2/a1-homologous regions of sorghum and rice. Genetics 148:435–443PubMedGoogle Scholar
  49. Chen ZJ (2007) Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Ann Rev Plant Biol 58:377–406CrossRefGoogle Scholar
  50. Chen ZJ, Scheffler BE, Dennis E et al. (2007) Towards sequencing cotton (Gossypium) genomes. Plant Physiol 145:1251–1263CrossRefGoogle Scholar
  51. Childs KL, Hamilton JP, Zhu W et al. (2007) The TIGR plant transcript assemblies database. Nucleic Acids Res 35:846–851CrossRefGoogle Scholar
  52. Chittenden LM, Schertz KF, LIN YR et al. (1994) A detailed RFLP map of Sorghum bicolor x S. propinquum, suitable for high-density mapping, suggests ancestral duplication of Sorghum chromosomes or chromosomal segments. Theor Appl Genet 87:925–933CrossRefGoogle Scholar
  53. Choi HK, Luckow MA, Doyle J et al. (2006) Development of nuclear gene-derived molecular markers linked to legume genetic maps. Mol Genet Genomics 276:56–70PubMedCrossRefGoogle Scholar
  54. Choi HK, Mun JH, Dong-Jin K et al. (2004) Estimating genome conservation between crop and model legume species. Proc Natl Acad Sci USA 101(43):15289–15294PubMedCrossRefGoogle Scholar
  55. Chyi YS, Honeck ME, Sernyk JL (1992) A genetic linkage map of restriction fragment length polymorphism loci for Brassica rapa (syn. campestris). Genome 35:746–757Google Scholar
  56. Coghlan A, Eichler EE, Oliver SG et al. (2005) Chromosome evolution in eukaryotes: a multi-kingdom perspective. Trends Genet 21:673–682PubMedCrossRefGoogle Scholar
  57. Conner JA, Conner P, Nasrallah ME et al. (1998) Comparative mapping of the Brassica S locus region and its homeolog in Arabidopsis: implications for the evolution of mating systems in the Brassicaceae. Plant Cell 10:801–812PubMedCrossRefGoogle Scholar
  58. Cordeiro GM, Casu R, McIntyre CL et al. (2001) Microsatellite markers from sugarcane (Saccharum spp.) ESTs cross transferable to erianthus and sorghum. Plant Sci 160:1115–1123PubMedCrossRefGoogle Scholar
  59. Cronn RC, Small RL, Haselkorn T et al. (2002) Rapid diversification of the cotton genus (Gossypium: Malvaceae) revealed by analysis of sixteen nuclear and chloroplast genes. Am J Bot 89:707–725CrossRefGoogle Scholar
  60. De Jong JH (1998) High resolution FISH reveals the molecular and chromosomal organization of repetitive sequences in tomato. Cytogenet Cell Genet 81:104Google Scholar
  61. Deutsch M, Long M (1999) Intron-exon structure of eukaryotic model organisms. Nucleic Acids Res 27:3219–3228PubMedCrossRefGoogle Scholar
  62. Devos KM (2005) Updating the “Crop Circle.” Curr Opin Plant Biol 8:155–162PubMedCrossRefGoogle Scholar
  63. Devos KM, Gale MD (2000) Genome relationships: the grass model in current research. Plant Cell 12:637–646PubMedCrossRefGoogle Scholar
  64. Devos KM, Dubcovsky J, Dvorak J et al. (1995) Structural evolution of wheat chromosomes 4A, 5A, and 7B and its impact on recombination. Theor Appl Genet 91:282–288CrossRefGoogle Scholar
  65. Dillon SD, Shapter FM, Henry RJ (2007) Domestication to crop improvement: genetic resources for Sorghum and Saccharum (Andropogoneae). Ann Bot 2007 100:975–989CrossRefGoogle Scholar
  66. Ding L, Sabo IA, Berkowicz N et al. (2004) EAnnot: A genome annotation tool using experimental evidence. Genome Res 14:2503–2509PubMedCrossRefGoogle Scholar
  67. Dixon RA, Sumner LW (2003) Legume natural products. Understanding and manipulating complex pathways for human and animal health. Plant Physiol 131:878–885PubMedCrossRefGoogle Scholar
  68. Doebley J (2006) Unfallen grains: how ancient farmers turned weeds into crops. Science 312:1318–1319PubMedCrossRefGoogle Scholar
  69. Doganlar S, Frary A, Daunay MC et al. (2002a). A comparative genetic linkage map of eggplant (Solanum melongena) and its implications for genome evolution in the Solanaceae. Genetics 161:1697–1711PubMedGoogle Scholar
  70. Doganlar S, Frary A, Daunay MC et al. (2002b) Conservation of gene function in the Solanaceae as revealed by comparative mapping of domestication traits in eggplant. Genetics 161:1713–1726PubMedGoogle Scholar
  71. Doust AN, Devos KM, Gadberry MD et al. (2004) Genetic control of branching in foxtail millet. Proc Natl Acad Sci USA 15:9045–9050CrossRefGoogle Scholar
  72. Dubcovsky J, Lijavetzky D, Appendino L et al. (1998) Comparative RFLP mapping of Triticum monococcum genes controlling vernalization requirement. Theor Appl Genet 1998:968–975CrossRefGoogle Scholar
  73. Duvick J, Fu A, Muppirala U et al. (2008) PlantGDB: a resource for comparative plant genomics. Nucleic Acids Res 36:959–965CrossRefGoogle Scholar
  74. Dvorak J, Yang ZL, You FM et al. (2004) Deletion polymorphism in wheat chromosome regions with contrasting recombination rates. Genetics 168:1665–1675PubMedCrossRefGoogle Scholar
  75. Edwards GA, Mirza MA (1979) Genomes of the Australian wild species of cotton. II. The designation of a new G genome for Gossypium bickii. Can J Genet Cytol 21:367–372Google Scholar
  76. Eichler EE, Sankoff D (2003) Structural dynamics of eukaryotic chromosomal evolution. Science 301:793–797PubMedCrossRefGoogle Scholar
  77. Eisen JA (1998) Phylogenomics: improving functional predictions for uncharacterized genes by evolutionary analysis. Genome Res 8:163–167PubMedGoogle Scholar
  78. El Kharbotly A, Leonards-Schippers C, Huigen DJ et al. (1994) Segregation analysis and RFLP mapping of the R1 and R3 alleles conferring race-specific resistance to Phytophthora infestans in progeny of dihaploid potato parents. Mol Gen Genet 242:749–754PubMedCrossRefGoogle Scholar
  79. El Kharbotly A, Palomino Sanchez C, Salamini F et al. (1996) R6 and R7 alleles of potato conferring race-specific resistance to Phytophthora infestans (Mont.) de Bary identified genetic loci clustering with the R3 locus on chromosome XI. Theor Appl Genet 92:880–884CrossRefGoogle Scholar
  80. Endre G, Kereszt A, Kevei Z, Mihacea S et al. GB (2002) A receptor kinase gene regulating symbiotic nodule development. Nature 417:962–966PubMedCrossRefGoogle Scholar
  81. Endrizzi JE, Turcotte EL, Kohel RJ (1985) Genetics, cytology, and evolution of Gossypium. Adv Genetics 23:271–375CrossRefGoogle Scholar
  82. Enright AJ, Van Dongen S, Ouzounis CA (2002) An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res 30:1575–1584PubMedCrossRefGoogle Scholar
  83. Ermolaeva MD, Wu M, Eisen JA et al. (2003) The age of Arabidopsis thaliana genome duplication. Plant Mol Biol 51:859–866PubMedCrossRefGoogle Scholar
  84. Fei Z, Tang X, Alba RM et al. (2004) Comprehensive EST analysis of tomato and comparative genomics of fruit ripening. Plant J 40:47–59PubMedCrossRefGoogle Scholar
  85. Feldman M, Lupton FGH, Miller TE (1995) Wheats. In: Smartt J, Simmonds NW (eds) Evolution of Crops, 2nd edn. Longman Scientific, LondonGoogle Scholar
  86. Feltus FA, Singh HP, Lohithaswa HC et al. (2006) A comparative genomics strategy for targeted discovery of single-nucleotide polymorphisms and conserved-noncoding sequences in orphan crops. Plant Physiol 140:1183–1191PubMedCrossRefGoogle Scholar
  87. Feuillet C, Keller B (2002) Comparative genomics in the grass family: Molecular characterization of grass genome structure and evolution. Ann Bot (Lond.) 89:3–10CrossRefGoogle Scholar
  88. Fernie AR, Willmitzer L (2001) Molecular and biochemical triggers of potato tuber development. Plant Physiol 127:1459–1465PubMedCrossRefGoogle Scholar
  89. Ferreira ME, Williams PH, Osborn TC (1994) RFLP mapping of Brassica napus using doubled haploid lines. Theor Appl Gene 89:615–621Google Scholar
  90. Feuillet C, Keller B (1999) High gene density is conserved at syntenic loci of small and large grass genomes. Proc Natl Acad Sci USA 96:8665–8670Google Scholar
  91. Figdore SS, Ferreira ME, Slocum MK et al. (1993) Association of RFLP markers with trait loci affecting clubroot resistance and morphological characters in Brassica oleracea L. Euphytica 69:33–44CrossRefGoogle Scholar
  92. Flavell RB, Bennett MD, Smith JB et al. (1974) Genome size and the proportion of repeated nucleotide sequence DNA in plants. Biochem Genetic 12:257−269CrossRefGoogle Scholar
  93. Foucher F, Morin J, Courtiade J et al. (2003) DETERMINATE and LATE FLOWERING are two TERMINAL FLOWER1/CENTRORADIALIS homologs that control distinct phases of flowering initiation and development in pea. Plant Cell 15:2742–2754PubMedCrossRefGoogle Scholar
  94. Fransz P, Soppe W, Schubert I (2003) Heterochromatin in interphase nuclei of Arabidopsis thaliana. Chromosome Res 11:227–240PubMedCrossRefGoogle Scholar
  95. Frary A, Nesbitt TC, Frary A et al. (2000) fw2.2: A quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88PubMedCrossRefGoogle Scholar
  96. Frary C, Doganlar S, Frampton A et al. (2003) Fine mapping of quantitative trait loci for improved fruit characteristics from Lycopersicon Chmielewskii Chromosome I. Genome 46:235–243Google Scholar
  97. Fryxell PA (1968) A redefinition of the tribe Gossypieae. Bot Gaz 129:296–308CrossRefGoogle Scholar
  98. Fryxell PA (1979) The natural history of the cotton tribe. Texas A&M University Press, College Station, TexasGoogle Scholar
  99. Fryxell PA (1988) Malvaceae of Mexico. Syst Bot Monographs 25:1–522Google Scholar
  100. Fryxell PA (1992) A revised taxonomic interpretation of Gossypium L. (Malvaceae). Rheedea 2:108–165Google Scholar
  101. Fulton TM, Van der Hoeven R, Eannetta NT et al. (2002) Identification, analysis, and utilization of conserved ortholog set markers for comparative genomics in higher plants. Plant Cell 14:1457–1467PubMedCrossRefGoogle Scholar
  102. Gale M, Devos KM (1998) Plant comparative genetics after 10 years. Science 282:656–659CrossRefGoogle Scholar
  103. Gaut BS (2002) Evolutionary dynamics of grass genomes. New Phytol 154:15–28CrossRefGoogle Scholar
  104. Gebhardt C, Walkemeier B, Henselewski H et al. (2003) Comparative mapping between potato (Solanum tuberosum) and Arabidopsis thaliana reveals structurally conserved domains and ancient duplications in the potato genome. Plant J 34:529–541PubMedCrossRefGoogle Scholar
  105. Gephardt C, Ritter E, Barone A et al. (1991) RFLP maps of potato and their alignment with the homologous tomato genome. Theor Appl Genet 83:49–57Google Scholar
  106. Gingle AR, Yang H, Chee PW et al. (2006) An integrated Web resource for cotton. Crop Sci 46:1998–2007CrossRefGoogle Scholar
  107. Giovannoni JJ (2004) Genetic regulation of fruit development and ripening. Plant Cell (Suppl) 16:170–180Google Scholar
  108. Goff SA, Ricke D, Lan TH et al. (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100PubMedCrossRefGoogle Scholar
  109. Graham PH, Vance CP (2003) Legumes: importance and constraints to greater use. Plant Physiol 131:872–877PubMedCrossRefGoogle Scholar
  110. Grant D, Cregan P, Shoemaker RC (2000) Genome organization in dicots:genome duplication in Arabidopsis and synteny between soybean and Arabidopsis. Proc Natl Acad Sci USA 97:4168–4173PubMedCrossRefGoogle Scholar
  111. Griffiths-Jones S (2004) The microRNA Registry. Nucleic Acids Res 32:D109–D111CrossRefGoogle Scholar
  112. Griffiths-Jones S, Grocock RJ, van Dongen S et al. (2006) miRBase:microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34:D140–D144CrossRefGoogle Scholar
  113. Grover CE, Kim H, Wing RA et al. (2004) Incongruent patterns of local and global genome size evolution in cotton. Genome Res 14:1474–1482PubMedCrossRefGoogle Scholar
  114. Grube RC, Radwanski ER, Jahn M (2000) Comparative genetics of disease resistance within the solanaceae. Genetics 155:873–887PubMedGoogle Scholar
  115. Gu YQ, Salse J, Coleman-Derr D et al. (2006) Types and rates of sequence evolution at the high-molecularweight glutenin locus in hexaploid wheat and its ancestral genomes. Genetics 174:1493–1504PubMedCrossRefGoogle Scholar
  116. Guyot R, Yahiaoui N, Feuillet C et al. (2004) In silico comparative analysis reveals a mosaic conservation of genes within a novel colinear region in wheat chromosome 1AS and rice chromosome 5S. Funct Integr Genomics 4:47–58PubMedCrossRefGoogle Scholar
  117. Hanson PM, Bernacchi D, Green S et al. (2000) Mapping a wild tomato introgression associated with tomato yellow leaf curl virus resistance in a cultivated tomato line. J Am Soc Hort Sci 125:15–20Google Scholar
  118. Hansson B, Kawabe A, Preuss S et al. (2006) Comparative gene mapping in Arabidopsis lyrata chromosomes 1 and 2 and the corresponding A. thaliana chromosome 1: recombination rates, rearrangements and centromere location. Genet Res 87:75–85PubMedCrossRefGoogle Scholar
  119. Hawkins JS, Kim H, Nason JD et al. (2006) Differential lineage-specific amplification of transposable elements is responsible for genome size variation in Gossypium. Genome Res 16:1252–1261PubMedCrossRefGoogle Scholar
  120. Henderson IR, Zhang XY, Lu C et al. (2006) Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation pattering. Nat Genet 38:721–725Google Scholar
  121. Hohmann U, Graner A, Endo TR (1995) Comparison of wheat physical maps with barley linkage maps for group 7 chromosomes. Theor Appl Genet 91:618–626Google Scholar
  122. Hu FY, Tao DY, Sacks E et al. (2003) Convergent evolution of perenniality in rice and sorghum. Proc Natl Acad Sci 100:4050–4054PubMedCrossRefGoogle Scholar
  123. Huang S, van der Vossen EAG, Kuang H et al. (2005) Comparative genomics enabled the isolation of the R3a late blight resistance gene in potato. Plant J 42:251–261PubMedCrossRefGoogle Scholar
  124. Huang S, Vleeshouwers VG, Werij JS et al. (2004) The R3 resistance to Phytophthora infestans in potato is conferred by two closely linked R genes with distinct specificities. Mol Plant Microbe Interact 17:428–435PubMedCrossRefGoogle Scholar
  125. International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800CrossRefGoogle Scholar
  126. Isidore E, Scherrer B, Chalhoub B et al. (2005) Ancient haplotypes resulting from extensive molecular rearrangements in the wheat A genome have been maintained in species of three different ploidy levels. Genome Res 15:526–536PubMedCrossRefGoogle Scholar
  127. Itoh T, Tanaka T, Barrero RA et al. (2007) Curated genome annotation of Oryza sativa ssp. japonica and comparative genome analysis with Arabidopsis thaliana. Genome Res 17:175–183PubMedCrossRefGoogle Scholar
  128. Ito Y, Arikawa K, Baltazar A et al. (2005) Rice Annotation Database (RAD): a contig-oriented database for map-based rice genomics. Nucleic Acid Res 33:651–655CrossRefGoogle Scholar
  129. Jackson SA, Rokhsar D, Stacey G et al. (2006) Toward a reference sequence of the soybean genome: a multiagency effort. Crop Sci 46:S-55–S-61Google Scholar
  130. Jaillon O, Aury JM, Noel B et al. (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467PubMedCrossRefGoogle Scholar
  131. Jaiswal P, Ni J, Yap I et al. (2006) Gramene: a bird’s eye view of cereal genomes. Nucleic Acids Res 34:717–723CrossRefGoogle Scholar
  132. Jannoo N, Grivet L, Chantret N et al. (2007) Orthologous comparison in a gene-rich region among grasses reveals stability in the sugarcane polyploid genome. Plant J 50:574–585PubMedCrossRefGoogle Scholar
  133. Jiang CX, Wright RJ, El-Zik KM et al. (1998) Polyploid formation created unique avenues for response to selection in Gossypium (cotton). Proc Natl Acad Sci 95:4419–4424PubMedCrossRefGoogle Scholar
  134. Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329PubMedCrossRefGoogle Scholar
  135. Judziewicz EJ, Clark LG, Londoño X et al. (1999) American bamboos. Smithsonian Institution Press, Washington, DC, USAGoogle Scholar
  136. Juretic N, Bureau TE, Bruskiewich RM (2004) Transposable element annotation of the rice genome. Bioinformatics 20:155–60PubMedCrossRefGoogle Scholar
  137. Karp A. (ed.) (1998) Molecular tools for screening biodiversity (Plants and animals), 1st edn. Chapmann and Hall, London, UKGoogle Scholar
  138. Kashkush K, Feldman M, Levy AA (2003) Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat Genet 33:102–106PubMedCrossRefGoogle Scholar
  139. Kawabe A, Hansson B, Hagenblad J et al. (2006) Centromere locations and associated chromosome rearrangements in Arabidopsis lyrata and A. thaliana. Genetics 173:1613–1619CrossRefGoogle Scholar
  140. Kellogg EA (1998) Relationships of cereal crops and other grasses. Proc Natl Acad Sci USA 97:9121–9126Google Scholar
  141. Kellogg EA, Bennetzen JL (2004) The evolution of nuclear genome structure in seed plants. Am J Bot 91(10):1709–1725CrossRefGoogle Scholar
  142. Kennard W, Phillips R, Porter R et al. (1999) A comparative map of wild rice (Zizania palustris L. 2n = 2x = 30). Theor Appl Genet 99:793–799CrossRefGoogle Scholar
  143. Kianian SF, Quiros CF (1992) Generation of a Brassica oleracea composite RFLP map: linkage arrangements among various populations and evolutionary implications. Theor Appl Genet 84:544–554CrossRefGoogle Scholar
  144. Kishimoto N, Higo H, Abe K et al. (1994) Identification of the duplicated segments in rice chromosomes 1 and 5 by linkage analysis of cDNA markers of known functions. Theor Appl Genet 88:722–726CrossRefGoogle Scholar
  145. Koch M, Al-Shehbaz IA, Mummenhoff K (2003) Molecular systematics, evolution, and population biology in the mustard family (Brassicaceae). Ann Mo Bot Gard 90:151–171CrossRefGoogle Scholar
  146. Koch MA, Kiefer M (2005) Genome evolution among cruciferous plants: a lecture from the comparison of the genetic maps of three diploid species – Capsella rubella, Arabidopsis lyrata subsp Petraea, and A. thaliana. Am J Bot 92:761–767CrossRefGoogle Scholar
  147. Koch MA, Dobes C, Kiefer C et al. (2007) Supernetwork identifies multiple events of plastid trnF (GAA) pseudogene evolution in the Brassicaceae. Mol Biol Evol 24:63–73PubMedCrossRefGoogle Scholar
  148. Komatsuda T, Pourkheirandish M, He C et al. (2007) Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proc Natl Acad Sci USA 104:1424–1429PubMedCrossRefGoogle Scholar
  149. Kowalski SP, Lan TH, Feldmann KA et al. (1994) Comparative mapping of Arabidopsis thaliana and Brassica oleracea chromosomes reveals islands of conserved organization. Genetics 138:499–510PubMedGoogle Scholar
  150. Kresovich S, Barbazuk B, Bedell JA et al. (2005) Toward sequencing the sorghum genome. A U.S. National Science Foundation-Sponsored Workshop Report. Plant Physiol 138:1898–1902CrossRefGoogle Scholar
  151. Krusell L, Madsen LH, Sato S et al. (2002) Shoot control of root development and nodulation is mediated by a receptor-like kinase. Nature 420:422–426PubMedCrossRefGoogle Scholar
  152. Ku HM, Vision T, Liu J et al. (2000) Comparing sequenced segments of the tomato and Arabidopsis genomes: Large-scale duplication followed by selective gene loss creates a network of synteny. Proc Natl Acad Sci USA 97:9121–9126PubMedCrossRefGoogle Scholar
  153. Kuittinen H, de Haan AA, Vog C et al. (2004) Comparing the linkage maps of the close relatives Arabidopsis lyrata and A. thaliana. Genetics 168:1575–1584PubMedCrossRefGoogle Scholar
  154. Kulikova O, Gualtieri G, Geurts R et al. (2001) Integration of the FISH pachytene and genetic maps of Medicago truncatula. Plant J 27:49–58PubMedCrossRefGoogle Scholar
  155. Kurata N, Yamazaki Y (2006) Oryzabase. An integrated biological and genome information database for rice. Plant Physiol 140:12–17PubMedCrossRefGoogle Scholar
  156. Lagercrantz U (1998) Comparative mapping between Arabidopsis thaliana and Brassica nigra indicates that Brassica genomes have evolved through extensive genome replication accompanied by chromosome fusions and frequent rearrangements. Genetics 150:1217–1228PubMedGoogle Scholar
  157. Lagercrantz U, Lydiate D (1996) Comparative genome mapping in Brassica. Genetics 144:1903–1910Google Scholar
  158. Lagercrantz U, Putterill J, Coupland G et al. (1996) Comparative mapping in Arabidopsis and Brassica, fine scale genome collinearity and congruence of genes controlling flowering time. Plant J 9:13–20PubMedCrossRefGoogle Scholar
  159. Lan TH, DelMonte TA, Reischmann KP et al. (2000) An EST-enriched comparative map of Brassica oleracea and Arabidopsis thaliana. Genome Res 10:776–788PubMedCrossRefGoogle Scholar
  160. Landry BS, Hubert N, Etoh T et al. (1991) A genetic map for Brassica napus based on restriction fragment length polymorphisms detected with expressed DNA sequences. Genome 34:543–552Google Scholar
  161. Lawrence CJ, Mary L, Schaeffer TE et al. (2007) MaizeGDB’s new data types, resources and activities. Nucleic Acids Res 35:895–900CrossRefGoogle Scholar
  162. Lee JM, Grant D, Vallejos CE, Shoemaker RC (2001) Genome organization in dicots. II. Arabidopsis as a ‘bridging species’ to resolve genome evolution events among legumes. Theor Appl Genet 103:765–773CrossRefGoogle Scholar
  163. Lefebvre V, Palloix A, Caranta C et al. (1995) Construction of an intraspecific integrated linkage map of pepper using molecular markers and doubled haploid progenies. Genome 38:112–121PubMedGoogle Scholar
  164. Leister D, Kurth J, Laurie DA et al. (1998) Rapid reorganization of resistance gene homologues in cereal genomes. Proc Natl Acad Sci USA 95:370–375PubMedCrossRefGoogle Scholar
  165. Levy J, Bres C, Geurts R et al. (2004) A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science 303:1361–1364PubMedCrossRefGoogle Scholar
  166. Li C, Zhou A, Sang T (2006) Rice domestication by reducing shattering. Science 311:1936–1939PubMedCrossRefGoogle Scholar
  167. Liang C, Jaiswa P, Hebbard C et al. (2008) Gramene: a growing plant comparative genomics resource. Nucleic Acids Res 36:947–953CrossRefGoogle Scholar
  168. Lin YR, Schertz KF, Paterson AH (1995) Comparative analysis of QTLs affecting plant height and maturity across the poaceae, in reference to an interspecific sorghum population. Genetics 141:391–411PubMedGoogle Scholar
  169. Liu B, Vega JM, Segal G et al. (1998) Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops. I. Changes in low copy non-coding DNA sequences. Genome 41:272–277CrossRefGoogle Scholar
  170. Liu Z, Moore PH, Ma H et al. (2004) A primitive Y chromosome in papaya marks incipient sex chromosome evolution. Nature 427:348–352PubMedCrossRefGoogle Scholar
  171. Livingstone KD, Lackney VK, Blauth JR et al. (1999) Genome mapping in Capsicum and the evolution of genome structure in the Solanaceae. Genetics 152:1183–1202PubMedGoogle Scholar
  172. Lukens LN et al. (2004) Genome redundancy and plasticity within ancient and recent Brassica crop species. Biol J Linnean Soc 82:665–674CrossRefGoogle Scholar
  173. Lynch M, Force A (2000) The probability of duplicate gene preservation by subfunctionalization. Genetics 154:459–473PubMedGoogle Scholar
  174. Lysak MA, Koch MA, Pecinka A et al. (2005) Chromosome triplication found across the tribe Brassiceae. Genome Res 15:516–525PubMedCrossRefGoogle Scholar
  175. Lysak MA, Berr A, Pecinka A et al. (2006) Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proc Natl Acad Sci USA 103:5224–5229PubMedCrossRefGoogle Scholar
  176. Lysak MA, Cheung K, Kitschke M et al. (2007) Ancestral chromosomal blocks are triplicated in Brassiceae species with varying chromosome number and genome size. Plant Physiol 145:402–410PubMedCrossRefGoogle Scholar
  177. Madlung A, Tyagi AP, Watson B et al. (2005) Genomic chnages in synthetic Arabidopsis polyploidy. Plant J 41:221–230PubMedCrossRefGoogle Scholar
  178. Madsen EB, Madsen LH, Radutoiu S et al. (2003) A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature 425:637–640PubMedCrossRefGoogle Scholar
  179. Marino CL, Nelson JC, Lu YH et al. (1996) RFLP-based linkage maps of the homoeologous group 6 chromosomes of hexaploid wheat (Triticum aestivum L. em. Thell). Genome 39:359–366PubMedCrossRefGoogle Scholar
  180. Martin DN, Proebsting WM, Hedden P (1997) Mendel’s dwarfi ng gene: cDNAs from the Le alleles and function of the expressed proteins. Proc Natl Acad Sci USA 94:8907–8911PubMedCrossRefGoogle Scholar
  181. Matsumoto T, Wu J, Kanamori H et al. (2005) The map based sequence of the rice genome. Nature 436:793–800CrossRefGoogle Scholar
  182. Mefford HC, Trask BJ (2002) The complex structure and dynamic evolution of human subtelomeres. Nat Rev Genet 3:91–102PubMedCrossRefGoogle Scholar
  183. Menacio-Hautea D, Fatokum CA, Kumar L et al. (1993) Comparative genome analysis of mungbean (Vigna radiata L. Wilczek) and cowpea (V. unguiculata) using RFLP analysis. Theor Appl Genet 86:797–810CrossRefGoogle Scholar
  184. Menzel MY, Hasenkampf CA, Stewart JMcD (1982) Incipient genome differentiation in Gossypium. III. Comparison of chromosomes of G. hirsutum and Asiatic diploids using heterozygous translocations. Genetics 100:89–103PubMedGoogle Scholar
  185. Mickelson-Young L, Endo TR, Gill BS (1995) A cytogenetic ladder-map of the wheat homoeologous group-4 chromosomes. Theor Appl Genet 90:1007–1011CrossRefGoogle Scholar
  186. Ming R, Hou S, Feng Y et al. (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991–997PubMedCrossRefGoogle Scholar
  187. Ming R, Liu S, Bowers JE et al. (2002) Construction of a Saccharum consensus genetic map from two interspecific crosses. Crop Sci 42:570–583CrossRefGoogle Scholar
  188. Ming R, Liu S, Lin Y et al. (1998) Alignment of the Sorghum and Saccharum chromosomes: Comparative genome organization and evolution of a polysomic polyploid genus and its diploid cousin. Genetics 150:1663–1682PubMedGoogle Scholar
  189. Ming R, Moore PH, Wu KK et al. (2005) Sugarcane improvement through breeding and biotechnology. Plant Breeding Rev 27:5–118Google Scholar
  190. Miller W, Makova KD, Nekrutenko A et al. (2004) Comparative genomics. Annu Rev Genomics Hum Genet 5:15–56PubMedCrossRefGoogle Scholar
  191. Mudge J, Cannon SB, Kalo P et al. (2005) Highly syntenic regions in the genomes of soybean, Medicago truncatula and Arabidopsis thaliana. BMC Plant Biol 5:15PubMedCrossRefGoogle Scholar
  192. Mueller LA, Mills AA, Skwarecki B et al. (2008) The SGN comparative map viewer. Bioinformatics 24:422–423PubMedCrossRefGoogle Scholar
  193. Mueller LA, Solow TH, Taylor N et al. (2005) The SOL genomics network. A comparative resource for Solanaceae biology and beyond. Plant Physiol 138:1310–1317PubMedCrossRefGoogle Scholar
  194. Mukhtar S, Rahman M, Zafar Y(2002) Assessment of genetic diversity among wheat cultivars using random amplified polymorphic DNA (RAPD) analysis. Euphytica 128:417–425CrossRefGoogle Scholar
  195. Muller HJ (1932) Further studies on the nature and causes of gene mutations. Int Congr Genet 61:213–255Google Scholar
  196. Nagaki K, Cheng ZK, Ouyang S et al. (2004) Sequencing of a rice centromere uncovers active genes. Nature Genet 36:138–145PubMedCrossRefGoogle Scholar
  197. Nagamura Y, Inoque T, Antonio BA et al. (1995) Conservation of duplicated segments between rice chromosomes 11 and 12. Breed Sci 45:373–376Google Scholar
  198. Namuth DM, Lapitan NLV, Gill KS et al. (1994) Comparative RFLP mapping of Hordeum vulgare and Triticum tauschii. Theor Appl Genet 89:865–872CrossRefGoogle Scholar
  199. Naranjo T, Roca A, Goicoechea PG et al. (1987) Arm homoeology of wheat and rye chromosomes. Genome 29:873–882Google Scholar
  200. Nelson JC, Sorrells ME, Van Deynze AE et al. (1995) Molecular mapping of wheat. Major genes and rearrangements in homoeologous groups 4, 5, and 7. Genetics 141:721–731PubMedGoogle Scholar
  201. Nishimura R, Hayashi M, Wu GJ et al. (2002) HAR1 mediates systemic regulation of symbiotic organ development. Nature 420:426–429PubMedCrossRefGoogle Scholar
  202. Nishiyama T, Fujita T, Shin-I T et al. (2003) Comparative genomics of Physcomitrella patens gametophytic transcriptome and Arabidopsis thaliana: implication for land plant evolution. Proc Natl Acad Sci USA 100:8007–8012PubMedCrossRefGoogle Scholar
  203. Ori, N., Eshed, Y., Paran, I., Presting, G., Aviv, D., Tanksley, S., Zamir, D. and Fluhr, R. (1997) The 12C family from the wilt disease resistance locus 12 belongs to the nucleotide binding, leucine-rich repeat superfamily of plant resistance genes. Plant Cell, 9, 521–532.Google Scholar
  204. Osborn TC (2004) The contribution of polyploidy to variation in Brassica species. Physiol Plantarum 121:531–536CrossRefGoogle Scholar
  205. Osborn TC, Pires JC, Birchler JA et al. (2003) Understanding mechanisms of novel gene expression in polyploids. Trends Genetic 19:141–147CrossRefGoogle Scholar
  206. Ouyang S, Zhu W, Hamilton J et al. (2007) The TIGR Rice Genome Annotation Resource: improvements and new features. Nucleic Acids Res 35:883–887CrossRefGoogle Scholar
  207. Oxelman B, Yoshikawa N, McConaughy BL, Luo J, Denton AL, Hall BD (2004) RPB2 gene phylogeny in flowering plants, with particular emphasis on asterids. Mol Phylogenet Evol 32:462–479PubMedCrossRefGoogle Scholar
  208. Palmer JD, Soltis DE, Chase MW (2004) The plant tree of life: an overview and some points of view. Am J Bot 91(10):1437–1445CrossRefGoogle Scholar
  209. Palmer LE, Rabinowicz PD, O’Shaughnessy AL et al. (2003) Maize genome sequencing by methylation filtration. Science 302:2115–2117PubMedCrossRefGoogle Scholar
  210. Pan Q, Liu YS, Budai-Hadrian O et al. (2000) Comparative genetics of nucleotide binding site-leucine rich repeat resistance gene homologues in the genomes of two dicotyledons: tomato and Arabidopsis. Genetics 155:309–322PubMedGoogle Scholar
  211. Paterson AH (2002) What has QTL mapping taught us about plant domestication? New Phytol 154:592–608CrossRefGoogle Scholar
  212. Paterson AH, Bennetzen JL (2001) Comparative mapping of plant chromosomes. In: Phillips RL, Vasil IK (eds) DNA-based markers in plants, 2nd edn. Kluwer Academic, Dordrecht, pp 101–114Google Scholar
  213. Paterson AH, Bowers JE, Burow MD et al. (2000) Comparative genomics of plant chromosomes. Plant Cell 12:1523–1539PubMedCrossRefGoogle Scholar
  214. Paterson AH, Bowers JE, Chapman BA (2004) Ancient polyploidization predating divergence of the cereals, and its consequences for comparative genomics. Proc Natl Acad Sci USA 101:9903–9908PubMedCrossRefGoogle Scholar
  215. Paterson AH, Bowers JE, Peterson DG et al. (2003) Structure and evolution of cereal genomes. Curr Opin Genet Dev 13:644–650PubMedCrossRefGoogle Scholar
  216. Paterson AH, Chapman BA, Kissinger JC et al. (2006) Many gene and domain families have convergent fates following independent whole-genome duplication events in Arabidopsis, Oryza, Saccharomyces and Tetraodon. Trends Genet 22:597–602PubMedCrossRefGoogle Scholar
  217. Paterson AH, Freeling M, Sasaki T (2005) Grains of knowledge: Genomics of model cereals. Genome Res 15:1643–1650PubMedCrossRefGoogle Scholar
  218. Paterson AH, Lin YR, Li ZK et al. (1995) Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science 269:1714–1718PubMedCrossRefGoogle Scholar
  219. Paterson AH, Bowers JE, Bruggmann R et al. (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556PubMedCrossRefGoogle Scholar
  220. Patil N, Berno A, Hinds D et al. (2001) Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science 294:1719–1723PubMedCrossRefGoogle Scholar
  221. Pedley KF, Martin GB (2003) Molecular basis of Pto-mediated resistance to bacterial speck disease in tomato. Annu Rev Phytopathol 41:215–243PubMedCrossRefGoogle Scholar
  222. Pereira MG, Lee M (1995) Identification of genomic regions affecting plant height in sorghum and maize. Theor Appl Genet 90:380–388CrossRefGoogle Scholar
  223. Periera MG, Lee M, Bramel-Cox P et al. (1994) Construction of an RFLP map in sorghum and comparative mapping in maize. Genome 37:236–243CrossRefGoogle Scholar
  224. Petrov DA, Wendel JF (2006) Genome evolution in eukaryotes: The genome size perspective. In: Fox CW, Wolf JB (eds) Evolutionary genetics: Concepts and case studies. Oxford University Press, Oxford, UKGoogle Scholar
  225. Pfeil BE, Brubaker CL, Craven LA et al. (2002) Phylogeny of Hibiscus and the tribe Hibisceae (Malvaceae) using chloroplast DNA sequences of ndhF and the rpl16 intron. Syst Bot 27:333–350Google Scholar
  226. Pfeil BE, Brubaker CL, Craven LA et al. (2004) Paralogy and orthology in the Malvaceae rpb2 gene family: investigation of gene duplication in Hibiscus. Mol Biol Evol 21(7):1428–1437PubMedCrossRefGoogle Scholar
  227. Phan HTT, Ellwood SR, Hane JK et al. (2007) Extensive macrosynteny between Medicago truncatula and Lens culinaris ssp. Culinaris. Theor Appl Genet 114:549–558PubMedCrossRefGoogle Scholar
  228. Phillips LL, Strickland MA (1966) The cytology of a hybrid between Gossypium hirsutum and G. longicalyx. Can J Genet Cytol 8:91–95Google Scholar
  229. Polhill RM, Raven PH (eds) (1981) Advances in legume systematics, parts 1 and 2. Royal Botanic Gardens, Kew, UKGoogle Scholar
  230. Prince JP, Pochard E, Tanksley SD (1993) Construction of a molecular linkage map of pepper, and a comparison of synteny with tomato. Genome 36:404–417PubMedCrossRefGoogle Scholar
  231. Qiu Y, Lee J, Bernasconi-Quadroni F et al. (1999) The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes. Nature 402:404–407PubMedCrossRefGoogle Scholar
  232. Raes J, Vandepoele K, Simillion C et al. (2003) Investigating ancient duplication events in the Arabidopsis genome. J Struct Funct Genomics 3:117–129PubMedCrossRefGoogle Scholar
  233. Rahman M, Hussain D, Zafar Y (2002) Estimation of genetic divergence among elite cotton (Gossypium hirsutum L.) cultivars/genotypes by DNA fingerprinting technology. Crop Sci 42:2137–2144CrossRefGoogle Scholar
  234. Rahman M, Malik TA, Hussain D et al. (2005) Genetics of resistance to cotton leaf curl virus disease in Gossypium hirsutum. Plant Pathol 54:764–772CrossRefGoogle Scholar
  235. Rahman M, Yasmin T, Tabassum N et al. (2008) Studying the extent of genetic diversity among Gossypium arboreum L. genotypes/cultivars using DNA fingerprinting. Genetic Resour Crop Evol 55:331–339CrossRefGoogle Scholar
  236. Rajagopalan R, Vaucheret H, Trejo J et al. (2006) A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 20:3407–3425PubMedCrossRefGoogle Scholar
  237. Rhee SY (2005) Bioinformatics. Current limitations and insights for the future. Plant Phy 138:569–570CrossRefGoogle Scholar
  238. Reinisch AJ, Dong JM, Brubaker CL et al. (1994) A detailed RFLP map of cotton, Gossypium hirsutum × Gossypium barbadense: Chromosome organization and evolution in a disomic polyploid genome. Genetics 138:829–847PubMedGoogle Scholar
  239. Rieseberg LH (2001) Chromosomal rearrangements and speciation. Trends Ecol Evol 16:351–358PubMedCrossRefGoogle Scholar
  240. Rokas A, Williams BL, KING N et al. (2003) Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425:798–804PubMedCrossRefGoogle Scholar
  241. Rong J, Abbey C, Bowers JE et al. (2004) A 3347-locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). Genetics 166:389–417PubMedCrossRefGoogle Scholar
  242. Rong J, Bowers JE, Schulze SR et al. (2005) Comparative genomics of Gossypium and Arabidopsis: Unraveling the consequences of both ancient and recent polyploidy. Genome Res 15:1198–1210PubMedCrossRefGoogle Scholar
  243. Rong J, Feltus FA, Waghmare VN et al. (2007) Meta-analysis of polyploid cotton QTLs shows unequal contributions of subgenomes to a complex network of genes and gene clusters implicated in lint fiber development. Genetics 176(4):2577–2588PubMedCrossRefGoogle Scholar
  244. Ross-Ibarra J, Morrell PL, Gaut BS (2007) Plant domestication, a unique opportunity to identify the genetic basis of adaptation. Proc Natl Acad Sci USA 104:8641–8648PubMedCrossRefGoogle Scholar
  245. Sadowski J, Quiros CF (1998) Organization of an Arabidopsis thaliana gene cluster on chromosome 4 including the RPS2 gene in the Brassica nigra genome. Theor Appl Genet 96:468–474CrossRefGoogle Scholar
  246. Sadowski J, Gaubier P, Delseny M et al. (1996) Genetic and physical mapping in Brassica diploid species of a gene cluster defined in Arabidopsis thaliana. Mol Gen Genet 251:298–306PubMedGoogle Scholar
  247. Sakata K, Antonio BA, Mukai Y et al. (2000) INE: a rice genome database with an integrated map view. Nucleic Acids Res 28:97–101PubMedCrossRefGoogle Scholar
  248. Sakata K, Nagamura Y, Numa H et al. (2002) RiceGAAS: an automated annotation system and database for rice genome sequence. Nucleic Acids Res 30:98–102PubMedCrossRefGoogle Scholar
  249. Salse J, Bolot S, Throude M et al. (2008) Identification and characterization of shared duplications between rice and wheat provide new insight into grass genome evolution. Plant Cell 20:11–24PubMedCrossRefGoogle Scholar
  250. Salse J, Piegu B, Cooke R et al. (2002) Synteny between Arabidopsis thaliana and rice at the genome level: A tool to identify conservation in the ongoing rice genome sequencing project. Nucleic Acids Res 30:2316–2328PubMedCrossRefGoogle Scholar
  251. Salse J, Piegu B, Cooke R et al. (2004) New in silico insight into the synteny between rice (Oryza sativa L.) and maize (Zea mays L.) highlights reshuffling and identifies new duplications in the rice genome. Plant J 38:396–409PubMedCrossRefGoogle Scholar
  252. Salvi S, Sponza G, Morgante M et al. (2007) Conserved non-coding genomic sequences controlling flowering time differences in maize. Proc Natl Acad Sci USA 104:11376–11381PubMedCrossRefGoogle Scholar
  253. Salzberg SL, White O, Peterson J et al. (2001) Microbial genes in the human genome: lateral transfer or gene loss? Science 292:1903–1906PubMedCrossRefGoogle Scholar
  254. Sato S, Nakamura Y, Asamizu E et al. (2007) Genome sequencing and genome resources in model legumes. Plant Physiol 144:806–820PubMedCrossRefGoogle Scholar
  255. Schauser L, Roussis A, Stiller J et al. (1999) A plant regulator controlling development of symbiotic root nodules. Nature 402:191–195PubMedCrossRefGoogle Scholar
  256. Schlueter JA, Scheffler BE, Jackson S et al. (2008) Fractionation of synteny in a genomic region containing tandemly duplicated genes across Glycine max, Medicago truncatula, and Arabidopsis thaliana. J Hered 99:390–395PubMedCrossRefGoogle Scholar
  257. Schneider K, Weisshaar B, Borchardt DC et al. (2001) SNP frequency and allelic haplotype structure of Beta vulgaris expressed genes. Mol Breed 8:63–74CrossRefGoogle Scholar
  258. Schranz ME, Lysak MA, Mitchell-Olds T (2006) The ABC’s of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci 11:535–542PubMedCrossRefGoogle Scholar
  259. Schranz ME, Windsor AJ, Song B et al. (2007) Comparative genetic mapping in Boechera stricta, a close relative of Arabidopsis. Plant Physiol 144:286–298PubMedCrossRefGoogle Scholar
  260. See DR, Brooks S, Nelson JC et al. (2006) Gene evolution at the ends of wheat chromosomes. Proc Natl Acad Sci 103:4162–4167PubMedCrossRefGoogle Scholar
  261. Seijo G, Lavia GI, Fernandez A et al. (2007) Genomic relationships between the cultivated peanut (Arachis hypogaea, Leguminosae) and its close relatives revealed by double GISH. Am J Bot 94:1963–1971CrossRefGoogle Scholar
  262. Shaheen T, Rahman M, Zafar Y (2006) Chloroplast RPS8 gene of cotton reveals the conserved nature through out taxa. Pak J Bot 38:1467–1476Google Scholar
  263. Shaked H, Kashkush K, Ozkan H et al. (2001) Allopolyploidy-induced rapid genome evolution in the wheat (Aegilops-Triticum) group. Plant Cell 13:1749–1759PubMedCrossRefGoogle Scholar
  264. Shinozaki K, Ohme M, Tanaka M et al. (1986) The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J 5:2043–2049PubMedGoogle Scholar
  265. Shultz JL, Kurunam D, Shopinski K et al. (2006) The Soybean Genome Database (SoyGD): a browser for display of duplicated, polyploid, regions and sequence tagged sites on the integrated physical and genetic maps of Glycine max. Nucleic Acids Res 34:758–765CrossRefGoogle Scholar
  266. Simons G, Groenendijk J, Wijbrandi J et al. (1998) Dissection of the Fusarium I2 gene cluster in tomato reveals six homologs and one active gene copy. Plant Cell 10:1055–1068PubMedCrossRefGoogle Scholar
  267. Singh R, Hymowitz T (1988) The genomic relationship between Glycine max and G. soja Sieb., and Zucc. as revealed by pachytene chromosome analysis. Theor Appl Genet 76:705–711CrossRefGoogle Scholar
  268. Singh NK, Raghuvanshi S, Srivastava SK et al. (2004) Sequence analysis of the long arm of rice chromosome 11 for rice-wheat synteny. Funct Integ Genomics 4:102–117CrossRefGoogle Scholar
  269. Singh NK, Dalal V, Batra K et al. (2007) Single-copy genes define a conserved order between rice and wheat for understanding differences caused by duplication, deletion, and transposition of genes. Funct Integr Genomics 7:17–35Google Scholar
  270. Slade AJ, Fuerstenberg S, Loeffler D et al. (2005) A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nat Biotechnol 23:75–81PubMedCrossRefGoogle Scholar
  271. Slocum MK, Figdore SS, Kennard WC et al. (1990) Linkage arrangement of restriction fragment lenght polymorphism loci in Brassica oleracea. Theor Appl Genet 80:57–64CrossRefGoogle Scholar
  272. Soltis DE, Soltis PS, Tate JA (2004) Advances in the study of polyploidy since Plant Speciation. New Phytol 161:173–191CrossRefGoogle Scholar
  273. Song K, Lu P, Tang K et al. (1995) Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc Natl Acad Sci USA 92:7719–7723PubMedCrossRefGoogle Scholar
  274. Song KM, Suzuki JY, Slocum MK et al. (1991) A linkage map of Brassica rapa (syn. campestris) based on restriction fragment length polymorphism loci. Theor Appl Genet 82:296–304CrossRefGoogle Scholar
  275. Song R, Segal G, Messing J (2004) Expression of the sorghum 10-member kafirin gene cluster in maize endosperm. Nucleic Acids Res 32:e189CrossRefGoogle Scholar
  276. Sorrells ME, Rota ML, Catherine E et al. (2003) Comparative DNA sequence analysis of wheat and rice genomes. Genome Res 13:1818–1827PubMedGoogle Scholar
  277. Speulman E, Bouchez D, Holub EB (1998) Disease resistance gene homologs correlate with disease resistance loci of Arabidopsis thaliana. Plant J 14:467–474PubMedCrossRefGoogle Scholar
  278. Stanhope MJ, Lupas A, Italia MJ et al. (2001) Phylogenetic analyses do not support horizontal gene transfers from bacteria to vertebrates. Nature 411:940–944PubMedCrossRefGoogle Scholar
  279. Stracke S, Kistner C, Yoshida S et al. (2002) A plant receptor-like kinase required for both bacterial and fungal symbioses. Nature 417:959–962PubMedCrossRefGoogle Scholar
  280. Suwabe K, Tsukazaki H, Iketani H et al. (2006) Simple sequence repeat-based comparative genomics between Brassica rapa and Arabidopsis thaliana: The genetic origin of clubroot resistance. Genetics 173:309–319PubMedCrossRefGoogle Scholar
  281. Swigonova Z, Bennetzen JL, Messing J (2005) Structure and evolution of the r/b chromosomal regions in rice, maize and sorghum. Genetics 169:891–906PubMedCrossRefGoogle Scholar
  282. Swigonova Z, Lai J, Ma J et al. (2004) Close split of sorghum and mazie genome proginators. Genome Res 14:1916–1923PubMedCrossRefGoogle Scholar
  283. Taher L, Rinner O, Garg S et al. (2004) AGenDA: gene prediction by cross-species sequence comparison. Nucleic Acids Res 32:305–308CrossRefGoogle Scholar
  284. Tang B, Bowers JE, Wang X et al. (2008a) Synteny and colinearity in plant genomes. Science 320:486–488PubMedCrossRefGoogle Scholar
  285. Tang B, Wang X, Bowers JE et al. (2008b) Unraveling ancient hexaploidy through multiply-aligned angiosperm gene maps. Genome Res 18:1944–1954PubMedCrossRefGoogle Scholar
  286. Tanksley SD (2004) The genetic, developmental, and molecular bases of fruit size and shape variation in tomato. Plant Cell (Suppl) 16:181–189Google Scholar
  287. Tanksley SD, Ganal MW, Prince JP et al. (1992) High density molecular linkage maps of the tomato and potato genomes. Genetics 132:1141–1160PubMedGoogle Scholar
  288. The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815CrossRefGoogle Scholar
  289. The Rice Chromosome 3 Sequencing Consortium (2005) Sequence, annotation, and analysis of synteny between rice Chromosome 3 and direrged grass species. Genome Res 15:1284–1291Google Scholar
  290. Thomas BC, Pedersen B, Freeling M (2006) Following tetraploidy in an Arabidopsis ancestor, genes were removed preferentially from one homeolog leaving clusters enriched in dose-sensitive genes. Genome Res 16:934–946PubMedCrossRefGoogle Scholar
  291. Thorup TA, Tanyolac B, Livingstone KD et al. (2000) Candidate gene analysis of organ pigmentation loci in the Solanaceae. Proc Natl Acad Sci USA 97:11192–11197PubMedCrossRefGoogle Scholar
  292. Town CD, Cheung F, Maiti R et al. (2006) Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy. Plant Cell 18:1348–1359PubMedCrossRefGoogle Scholar
  293. Teutenico RA, Osborn TC (1994) Mapping of RFLP and qualitative trait loci in Brassica rapa, and comparison to linkage maps of B. napus, B. oleracea, and Arabidopsis thaliana . Theor Appl Genet 89:885–894Google Scholar
  294. Tranquilli G, Dubcovsky J (2000) Epistatic interaction between vernalization genes Vrn-Am1 and Vrn-Am2 in diploid wheat. J Hered 91:304–306PubMedCrossRefGoogle Scholar
  295. Truco MJ, Hu J, Sadowski J et al. (1996) Inter- and intra-genomic homology of the Brassica genomes: implications for their origin and evolution. Theor Appl Genet 93:1225–1233CrossRefGoogle Scholar
  296. Tsudzuki J, Nakashima K, Tsudzuki T et al. (1992) Chloroplast DNA of black pine retains a residual inverted repeat lacking rRNA genes: Nucleotide sequence of trnQ, trnK, psbA, trnI and trnH and the absence of rps16. Mol Gen Genet 232:206–214PubMedGoogle Scholar
  297. Tuskan GA, Difazio S, Jansson S et al. (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604PubMedCrossRefGoogle Scholar
  298. Udall JA, Quijada PA, Lambert B et al. (2006) Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.). 2. Identification of alleles from unadapted germplasm. Theor Appl Genet 113:597–609PubMedCrossRefGoogle Scholar
  299. Ulloa M, Saha S, Jenkins JN et al. (2005) Chromosomal assignment of RFLP linkage groups harboring important QTLs on an intraspecific cotton (Gossypium hirsutum L.) Joinmap. J Hered 96:132–144PubMedCrossRefGoogle Scholar
  300. Uzunova M, Ecke W, Weissleder K et al. (1995) Mapping the genome of rapeseed (Brassica napus L.) I. Construction of an RFLP linkage map and localization of QTLs for seed glucosinate content. Theor Appl Genet 90:194–204CrossRefGoogle Scholar
  301. Van K, Kim DH, Cai CM et al. (2008) Sequence level analysis of recently duplicated regions in soybean (Glycine max (L.) Merr.) Genome DNA Res 15:93–102CrossRefGoogle Scholar
  302. Van der KE, Tanksley S (2003) The making of a bell pepper-shaped tomato fruit: identification of loci controlling fruit morphology in Yellow Stuffer tomato. Theor Appl Genet 107:139–147Google Scholar
  303. Van Deynze AE, Dubcovsky J, Gill KS et al. (1995) Molecular-genetic maps for chromosome 1 in Triticeae species and their relation to chromosomes in rice and oats. Genome 38:47–59Google Scholar
  304. Vandepoele K, Simillion C, Van de Peer Y (2003) Evidence that rice and other cereals are ancient aneuploids. Plant Cell 15:2192–2202PubMedCrossRefGoogle Scholar
  305. Vettore AL, da Silva FR, Kemper EL et al. (2003) Analysis and functional annotation of an expressed sequence tag collection for tropical crop sugarcane. Genome Res 13:2725–2735PubMedCrossRefGoogle Scholar
  306. Vincentz M, Cara FAA, Okura VK et al. (2004) Evaluation of monocot and eudicot divergence using the sugarcane transcriptome. Plant Physiol 134:951–959PubMedCrossRefGoogle Scholar
  307. Vinogradov AE (1999) Intron-genome size relationship on a large evolutionary scale. J Mol Evol 49:376–384PubMedCrossRefGoogle Scholar
  308. Vision TJ, Brown DG, Tanksley SD (2000) The origins of genome duplications in Arabidopsis. Science 290:2114–2117PubMedCrossRefGoogle Scholar
  309. Wall PK, Leebens-Mack J, Muüller KF et al. (2008) PlantTribes: a gene and gene family resource for comparative genomics in plants. Nucleic Acids Res 36:970–976CrossRefGoogle Scholar
  310. Wang B, Brendel V (2006) Genomewide comparative analysis of alternative splicing in plants Proc Natl Acad Sci 103:7175–7180PubMedCrossRefGoogle Scholar
  311. Wang J, Tian L, Lee H-S et al. (2006) Genome wide non-additive gene regulation in Arabidopsis allotetraploids. Genetics 172:507–517PubMedCrossRefGoogle Scholar
  312. Wang WY, Barratt BJ, Clayton DG et al. (2005) Genome-wide association studies: theoretical and practical concerns. Nat Rev Genet 6:109–118PubMedCrossRefGoogle Scholar
  313. Ware DH, Jaiswal P, Ni J et al. (2002) Gramene, a tool for grass genomics. Plant Physiol 130:1606–1613PubMedCrossRefGoogle Scholar
  314. Warwick SI, Al-Shehbaz IA (2006) Brassicaceae: chromosome number index and database on CD-Rom. Plant Syst Evol 259:237–248CrossRefGoogle Scholar
  315. Warwick SI, Al-Shehbaz IA, Sauder CA (2006) Phylogenetic position of Arabis arenicola and generic limits of Eutrema and Aphragmus (Brassicaceae) based on sequences of nuclear ribosomal DNA. Can J Bot 84:269–281Google Scholar
  316. Weeden N (2007) Genetic changes accompanying the domestication of Pisum sativum: Is there a common genetic basis to the ‘domestication syndrome’ for legumes? Ann Bot 100:1017–1025PubMedCrossRefGoogle Scholar
  317. Weeden NL, Muehlbauer FJ, Ladizinsky G (1992) Extensive conservation of linkage relationships between pea and lentil genetic maps. J Hered 83:123–129Google Scholar
  318. Wei F, Coe E, Nelson W et al. (2007) Physical and genetic structure of the maize genome reflects its complex evolutionary history. PLoS Genet 3:e123CrossRefGoogle Scholar
  319. Wendel JF (1989) New World tetraploid cottons contain Old World cytoplasm. Proc Natl Acad Sci USA 86:4132–4136PubMedCrossRefGoogle Scholar
  320. Wendel JF, Albert VA (1992) Phylogenetics of the cotton genus (Gossypium): Character-state weighted parsimony analysis of chloroplast-DNA restriction site data and its systematic and biogeographic implications. Syst Bot 17:115–143CrossRefGoogle Scholar
  321. Wendel JF, Cronn RC (2003) Polyploidy and the evolutionary history of cotton. Adv Agron 78:139–186CrossRefGoogle Scholar
  322. Wendel JF, Cronn RC, Alvarez I et al. (2002) Intron size and genome size in plants. Mol Biol Evol 19:2346–2352PubMedGoogle Scholar
  323. Whitelaw CA, Barbazuk WB, Pertea G et al. (2003) Enrichment of gene-coding sequences in maize by genome filtration. Science 302:2118–2120PubMedCrossRefGoogle Scholar
  324. Whitkus R, Doebley J, Lee M (1992) Comparative genetic mapping of sorghum and maize. Genetics 132:1119–1130PubMedGoogle Scholar
  325. Wicker T, Yahiaoui N, Keller B (2007) Contrasting rates of evolution in Pm3 Loci from three wheat species and rice. Genetics 177:1207–1216PubMedCrossRefGoogle Scholar
  326. Wicker T, Guyot R, Yahiaoui N et al. (2003) CACTA Transposons in Triticeae. A diverse family of high-copy repetitive elements. Plant Physiol 132:52–63PubMedCrossRefGoogle Scholar
  327. Wills DM, Burke JM (2007) QTL analysis of the early domestication of sunflower. Genetics 176:2589–2599PubMedCrossRefGoogle Scholar
  328. Windsor AJ, Mitchell-Olds T (2006) Comparative genomics as a tool for gene discovery. Curr Opin Biotech 17:161–167PubMedGoogle Scholar
  329. Wu F, Mueller LA, Crouzillat D et al. (2006) Combining bioinformatics and phylogenetics to identify large sets of single-copy orthologous genes (COSII) for comparative, evolutionary and systematic studies: a test case in the Euasterid plant clade. Genetics 174:1407–1420PubMedCrossRefGoogle Scholar
  330. Yahiaoui N, Brunner S, Keller B (2006) Rapid generation of new powdery mildew resistance genes after wheat domestication. Plant J 47:85–98PubMedCrossRefGoogle Scholar
  331. Yahiaoui N, Srichumpa P, Dudler R et al. (2004) Genome analysis at different ploidy levels allows cloning of the powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J 37:528–538PubMedCrossRefGoogle Scholar
  332. Yan HH, Mudge J, Kim DJ et al. (2003) Estimates of conserved microsynteny among the genomes of Glycine max, Medicago truncatula, and Arabidopsis thaliana. Theor Appl Genet 106:1256–1265PubMedGoogle Scholar
  333. Yang YW, Lai KN, Tai PY et al. (1999) Rates of nucleotide substitution in angiosperm mitochondrial DNA sequences and dates of divergence between Brassica and other angiosperm lineages. J Mol Evol 48:597–604PubMedCrossRefGoogle Scholar
  334. Yang T-J, Kim JS, Kwon S-J et al. (2006) Sequence-level analysis of the diploidization process in the triplicated FLOWERING LOCUS C region of Brassica rapa. Plant Cell 18:1339–1347PubMedCrossRefGoogle Scholar
  335. Yogeeswaran K, Frary A, York TL et al. (2005) Comparative genome analyses of Arabidopsis spp.: Inferring chromosomal rearrangement events in the evolutionary history of A. thaliana. Genome Res 15:505–515PubMedCrossRefGoogle Scholar
  336. Young ND, Cannon SB, Sato S et al. (2005) Sequencing the Gene spaces of Medicago truncatula and Lotus japonicus. Plant Physiol 137:1174–1181PubMedCrossRefGoogle Scholar
  337. Yu J, Hinze L, Frelichowski J et al. (2008) CottonDB: Cotton Genome Database. Intl Cotton genome Initiative. Plant and Animal Genome Conference (Jan 12–16, 2008) W 253Google Scholar
  338. Yu J, Hu S, Wang J et al. (2002) A draft sequence of the rice genome (Oryza sativa L. Spp. indica). Science 296:79–92Google Scholar
  339. Yu J, Wang J, Lin W et al. (2005) The Genomes of Oryza sativa: a history of duplications. PLoS Biol 3:e38CrossRefGoogle Scholar
  340. Yuan Q, Ouyang S, Wang A et al. (2005) The Institute for Genomic Research Osa1 rice genome annotation database. Plant Physiol 138:18–26PubMedCrossRefGoogle Scholar
  341. Zhao XP, Ji YF, Ding XL et al. (1998) Macromolecular organization and genetic mapping of a rapidly evolving chromosome-specific tandem repeat family (B77) in cotton (Gossypium). Plant Mol Biol 38(6):1031–1042PubMedCrossRefGoogle Scholar
  342. Ziolkowski PA Kaczmarek M, Babula D et al. (2006) Genome evolution in Arabidopsis/Brassica: conservation and divergence of ancient rearranged segments and their breakpoints. Plant J 47:63–74CrossRefGoogle Scholar
  343. Zhu H, Choi HK, Cook DR et al. (2005) Bridging model and crop legumes through comparative genomics. Plant Physiol 137:1189–1196PubMedCrossRefGoogle Scholar
  344. Zhu W, Buell CR (2007) Improvement of whole-genome annotation of cereals through comparative analyses. Genome Res 17:299–310PubMedCrossRefGoogle Scholar
  345. Zygier S, Chaim AB, Efrati A et al. (2005) QTLs mapping for fruit size and shape in chromosomes 2 and 4 in pepper and a comparison of the pepper QTL map with that of tomato. Theor Appl Genet 111:437–445PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Plant Genomics and Mol Breeding Labs, National Institute for Biotechnology and Genetic Engineering (NIBGE)FaisalabadPakistan
  2. 2.Plant Genome Mapping Laboratory, University of GeorgiaAthensUSA

Personalised recommendations