Advertisement

Breeding Strategies to Adapt Crops to a Changing Climate

  • R. M. Trethowan
  • M. A. Turner
  • T. M. Chattha
Chapter
Part of the Advances in Global Change Research book series (AGLO, volume 37)

Abstract

Climate change is expected to reduce global crop productivity, although the impact will vary region to region. At many locations, particularly those at lower latitudes, the environment will become drier and hotter, which will reduce crop yields and potentially change the incidence of insect pests and diseases. These climatic changes are also expected to alter the nutritional properties and processing quality of crop products. This chapter describes breeding approaches that may be employed to mitigate the effects of increased heat and drought in the crop production environment.

Keywords

Double Haploid Heat Tolerance Conservation Agriculture Micronutrient Concentration Meet Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ahmad H, Bajelan B (2008) Heritability of drought tolerance in wheat. Am Eurasian J Agric Environ Sci 3:632–635Google Scholar
  2. APA (2004) Population and society: issues, research, policy. In: 12th Biennial Conference, Australian Population Association, Canberra, 15–17 September 2004Google Scholar
  3. Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216CrossRefGoogle Scholar
  4. Bänziger M, Setimela PS, Hodson D, Vivek B (2004) Breeding for improved drought tolerance in maize adapted to southern Africa. In: Proceedings of workshop on “Resilient Crops for Water Limited Environments”, Cuernavaca, Mexico, 24–28 May 2004Google Scholar
  5. Bertholdsson NO (2005) Early vigour and allelopathy – two useful traits for enhanced barley and wheat competitiveness against weeds. Weed Res (Oxford) 45:94–102CrossRefGoogle Scholar
  6. Blum A, Pnuel Y (1990) Physiological attributes associated with drought resistance to wheat cultivars in a Mediterranean Environment. Aust J Agric Res 41:799–810CrossRefGoogle Scholar
  7. Blumenthal C, Wrigley CW, Batey IL, Barlow EWR (1994) The heat-shock response relevant to molecular and structural changes in wheat yield and quality. Aust J Plant Physiol 21:901–909CrossRefGoogle Scholar
  8. Bonnett DG, Rebetzke GJ, Spielmeyer W (2005) Strategies for efficient implementation of molecular markers in wheat breeding. Mol Breeding 15:75–85CrossRefGoogle Scholar
  9. Boubaker M, Yamada T (1991) Screening spring wheat genotypes (Triticum sp.) for seedling emergence under optimal and suboptimal temperature conditions. Jpn J Breed 41:381–387Google Scholar
  10. Brakke JP, Francis CA, Nelson LA, Gardner CO (1983) Genotype by cropping system interactions in maize grown in a short season environment. Crop Sci 23:868–870CrossRefGoogle Scholar
  11. Braun HJ, Brettell R (2009) The role of international centers in enhancing cooperation in wheat improvement. In: Borlaug Global Rust Initiative, Technical Workshop, Ciudad Obregon, 20 March 2009Google Scholar
  12. Byerlee D, Moya P (1993) Impacts of international wheat breeding research in the developing world, 1966–1990. CIMMYT, Mexico City, Mexico DFGoogle Scholar
  13. Ceccarelli S, Grando S (2007) Decentralized-participatory plant breeding: an example of demand driven research. Euphytica 155:349–360CrossRefGoogle Scholar
  14. Chapman SC, Cooper M, Butler DG, Henzell RG (2000) Genotype by environment interactions affecting grain sorghum. I. Characteristics that confound interpretation of hybrid yield. Aust J Agric Res 51:197–207CrossRefGoogle Scholar
  15. Chapman S, Cooper M, Podlich D, Hammer G (2003) Evaluating plant breeding strategies by simulating gene action and dryland environment effects. Agron J 95:99–113CrossRefGoogle Scholar
  16. Christensen, JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon W-T, Laprise R, Magaña Rueda V, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P (2007) Regional climate projections. In : Solomon S, Qin D, Manning M, Marquis M, Averyt KB, Tignor M, Miller HL, and Chen Z (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK and New York, NY, USAGoogle Scholar
  17. Crossa J, Cornelius PL, Sevedsadr M, Byrne P (1993) A shifted multiplicative model cluster analysis for grouping environments without genotype ranking change. Theor Appl Genet 85:577–586CrossRefGoogle Scholar
  18. Crossa J, Burgueno J, Dreisigacker S, Vargas M, Hererra-Foessel SA, Lillemo M, Singh RP, Trethowan R, Warburton M, Franco J, Reynolds M, Crouch JH, Ortiz R (2007) Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genet 177:1889–1913CrossRefGoogle Scholar
  19. DeLacy IH, Basford KE, Cooper M, Bull JK, McLaren CG (1996) Analysis of multi-environment trials, a historical perspective. In: Cooper M, Hammer GL (eds) Plant adaptation and crop improvement. CAB International, Wallingford, UK, pp 39–124Google Scholar
  20. Edmeades G, Banziger M, Campus H, Schussler J (2006) Improving tolerance to abiotic stresses in staple crops. A random or planned process? In: Lamkey KR, Lee M (eds) Plant breeding. The Arnel R. Hallauer International Symposium, Wiley-Blackwell, pp 293–309Google Scholar
  21. Ehdaie B, Whitkus RW, Waines JG (2003) Root biomass, water-use efficiency, and performance of wheat-rye translocations of chromosomes 1 and 2 in spring bread wheat ‘Pavon’. Crop Sci 43:710–717CrossRefGoogle Scholar
  22. Ehlers JD, Hall AE (1998) Heat tolerance of contrasting cowpea lines in short and long days. Field Crop Res 55:11–21CrossRefGoogle Scholar
  23. Elmore RW (1990) Soybean cultivar response to tillage systems and planting date. Agron J 82:69–73CrossRefGoogle Scholar
  24. Ezzati M, Lopez AD, Rodgers A, Vander Hoorn S, Murray CJL (2002) Selected major risk factors and global and regional burden of disease. Lancet (British edition) 360:1347–1360Google Scholar
  25. FAO (2001) Climate change: implications for food safety paper. http://www.fao.org/ag/agn/agns/files/HLC1_Climate_Change_and_Food_Safety.pdf
  26. FAO(2005) Rice is life. International year of rice 2004 and its implementation. Food and Agriculture Organization of the United Nations (FAO), Rome, ItalyGoogle Scholar
  27. Farooq S, Farooq-E-Azam (2001) Co-existence of salt and drought tolerance in Triticeae. Hereditas 135(2–3):205Google Scholar
  28. Feldman M (2001) The origin of cultivated wheat. In: Bonjean A, Angus W (eds) The world wheat book. Lavoisier, ParisGoogle Scholar
  29. Francis CA, Moomaw RS, Rajewski JF, Saeed M (1986) Grain sorghum hybrid interactions with tillage system and planting dates. Crop Sci 26:191–193CrossRefGoogle Scholar
  30. Ginkel van M, Ortiz-Monasterio I, Trethowan R, Hernandez E (2001) Methodology for selecting segregating populations for improved N-use efficiency in bread wheat. Euphytica 119:223–230Google Scholar
  31. Gororo NN, Eagles HA, Eastwood RF, Nicolas ME, Flood RG (2002) Use of Triticum tauschii to improve yield of wheat in low-yielding environments. Euphytica 123:241–254CrossRefGoogle Scholar
  32. Govaerts B, Fuentes M, Mezzalama M, Nicol MJ (2007) Infiltration, soil moisture, root rot and nematode populations after 12 years of different tillage, residue and crop rotation managements. Soil Till Res 94:209–219CrossRefGoogle Scholar
  33. Greene SL, Thomas CH, Afonin A (1999) Using geographic information to acquire wild crop germplasm for ex situ collections: II. Post-collection analysis. Crop Sci 39:843–849CrossRefGoogle Scholar
  34. Guimaraes EP (2002) Genetic diversity of rice production in Brazil. Pp 11–35. In ‘Genetic diversity in rice production: Case studies from Brazil, India and Nigeria”. Nguyen VN (ed.), FAO/Rome (Italy). Plant Production and Protection DivisionGoogle Scholar
  35. Gupta PK, Kulwal PL, Rustgi S (2005) Wheat cytogenetics in the genomics era and its relevance to breeding. Cytogenet Genome Res 109:315–327CrossRefGoogle Scholar
  36. Gutierrez A (2006) Estabilidad del rendimiento y calidad de semilla e industrial de trigos harineros en ambientes de riego y temporal y sistemas de labranza. PhD thesis, Colegio de Postgraduados, Montecillo, Texcoco, Edo de MexicoGoogle Scholar
  37. Guttieri MJ, Stark JC, O’Brien K, Souza E (2001) Relative sensitivity of Spring wheat grain yield and quality parameters to moisture deficit. Crop Sci 41:335–344CrossRefGoogle Scholar
  38. Hede AR, Skovmand B, Reynolds MP, Crossa J, Vilhelmsen AL, Stolen O (1999) Evaluating genetic diversity for heat tolerance traits in Mexican wheat landraces. Genet Resour Crop Evol 46:37–45CrossRefGoogle Scholar
  39. Hennessy K, McInnes K, Abbs D, Jones R, Bathols J, Suppiah R, Ricketts J, Rafter T, Collins D, Jones D (2004) Climate Change in New South Wales Part 2: Projected changes in climate extremes. CSIRO website: http://www.dar.csiro.au/publications/hennessy_2004c.pdf
  40. Jiang GL, Shi JR, Ward RW (2007) QTL analysis of resistance to Fusarium head blight in the novel wheat germplasm CJ 9306. I. Resistance to fungal spread. Theor Appl Genet 116:3–13CrossRefGoogle Scholar
  41. Joshi AK, Chand R, Arun B, Singh RP, Ortiz R (2007) Breeding crops for reduced-tillage management in the intensive, rice-wheat systems of South Asia. Euphytica 153:135–151CrossRefGoogle Scholar
  42. Kennedy G, Nantel G, Shetty P (2002) The scourge of “hidden hunger”: global dimensions of micronutrient deficiencies. Food Nutr Agric 32:8–16Google Scholar
  43. Lage J, Trethowan RM (2008) CIMMYT’s use of synthetic hexaploid wheat in breeding for adaptation to rainfed environments globally. Aust J Agric Res 59:461–469CrossRefGoogle Scholar
  44. Liang YL, Richards RA (1999) Seedling vigor characteristics among Chinese and Australian wheats. Commun Soil Sci Plant Anal 30:159–165CrossRefGoogle Scholar
  45. Lillemo M, van Ginkel M, Trethowan RM, Hernandez E, Crossa J (2005) Differential adaptation of CIMMYT bread wheat to global high temperature environments. Crop Sci 45:2443–2453CrossRefGoogle Scholar
  46. Mace ES, Xia L, Jordan DR, Halloran K, Parh DK, Huttner E, Wenzl P, Kilian A (2008) DArT markers: diversity analyses and mapping in Sorghum bicolour. BMC Genomics 9:26CrossRefGoogle Scholar
  47. Machado S, Paulsen GM (2001) Combined effects of drought and high temperature on water relations of wheat and sorghum. Plant Soil 233:179–187Google Scholar
  48. Melo PGS, Melo LC, Soares AA, Lima LM de, Reis M de S, Juliatti FC, Cornelio VMO (2005) Study of the interaction genotypes × environments in the selection process of upland rice. Crop Breed Appl Biotechnol 5:38–46Google Scholar
  49. Menkir A (2008) Genetic variation for grain mineral content in tropical-adapted maize inbred lines. Food Chem 110:454–464CrossRefGoogle Scholar
  50. Mergoum M, Frohberg RC, Stack RW, Rasmussen JB, Friesen TL (2006) Registration of ‘Howard’ wheat. Crop Sci 46:2072–2073Google Scholar
  51. Moghaddam ME, Trethowan RM, William HM, Rezai A, Arzani A, Mirlohi AF (2005) Assessment of genetic diversity in bread wheat genotypes for tolerance to drought using AFLPs and agronomic traits. Euphytica 141:147–156CrossRefGoogle Scholar
  52. Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250CrossRefGoogle Scholar
  53. Murphy KM, Reeves PG, Jones SS (2008) Relationship between yield and mineral nutrient concentrations in historical and modern spring wheat cultivars. Euphytica 163:381–390CrossRefGoogle Scholar
  54. Nehvi FA, Shafiq Wani A, Zargar GH (2000) Heterosis in bread wheat (Triticum aestivum L.). Appl Biol Res 2:69–74Google Scholar
  55. Newhouse KE (1985) Genotype by tillage interactions in maize (Zea mays L.). Diss Abstr Int B (Sci Eng) 45:1973BGoogle Scholar
  56. Nultsch W (2001) Allgemeine Botanik. 11. Auflage. Georg Thieme Verlag, StuttgartGoogle Scholar
  57. Ogbonnaya F, Dreccer F, Ye G, Trethowan RM, Lush D, Shepperd J, Ginkel M van (2007) Yield of synthetic backcross-derived lines in rainfed environments of Australia. Euphytica 157:321–336CrossRefGoogle Scholar
  58. Okogbenin E, Porto MCM, Egesi C, Mba C, Espinosa E, Santos LG, Ospina C, Marín J, Barrera E, Gutiérrez J, Ekanayake I, Iglesias C, Fregene MA (2007) Marker-assisted introgression of resistance to cassava mosaic disease into latin American germplasm for the genetic improvement of cassava in Africa. Crop Sci 47:1895–1904CrossRefGoogle Scholar
  59. Ozturk L, Yazici MA, Yucel C, Torun A, Cekic C, Bagci A, Ozkan H, Braun HJ, Savers Z, Cakmak I (2006) Concentration and localization of zinc during seed development and germination in wheat. Physiol Plant 128:144–152CrossRefGoogle Scholar
  60. Pingali P (2007) Westernization of Asian diets and the transformation of food systems: implications for research and policy. Food Policy 32:281–298CrossRefGoogle Scholar
  61. Rajaram S, Mann CE, Ortiz-Ferrara G, Mujeeb-Kazi A (1983) Adaptation, stability and high yield potential of certain 1B/1R CIMMYT wheats. In: Sakamoto S (ed) Proceedings of 6th International Wheat Genetics Symposium. Maruzen, Kyoto, pp 613–621Google Scholar
  62. Rebetzke GJ, Richards RA, Sirault XRR, Morrison AD (2004) Genetic analysis of coleoptile length and diameter in wheat. Aust J Agric Res 55:733–743CrossRefGoogle Scholar
  63. Rebetzke GJ, Richards RA, Fettell NA, Long M, Condon AG, Forrester RI, Botwright TL (2007) Genotypic increases in coleoptile length improves stand establishment, vigour and grain yield of deep sown wheat. Field Crop Res 100:10–23CrossRefGoogle Scholar
  64. Reddy BVS, Ramesh S, Longvah T (2005) Prospects of breeding for micronutrients and beta-carotene-dense sorghums. Int Sorghum Millets Newsl 46:10–14Google Scholar
  65. Reynolds MP, Trethowan RM (2007) Physiological interventions in breeding for adaptation to abiotic stress. pp 129–146. In: Spiertz JHJ, Struik PC, Van Laar HH (eds) Scale and complexity in plant systems research, gene-plant-crop relations. Springer, The NetherlandsGoogle Scholar
  66. Reynolds M, Dreccer F, Trethowan RM (2007b) Drought adaptive mechanisms from wheat landraces and wild relatives. J Exp Bot 58:177–186CrossRefGoogle Scholar
  67. Reynolds MP, Pierre CS, Saad ASI, Vargas M, Condon AG (2007a) Evaluating potential genetic gains in wheat associated with stress-adaptive trait expression in elite genetic resources under drought and heat stress. Crop Sci 47(Suppl 3):S172–S189Google Scholar
  68. Ribaut JM, Hoisington DA, Deutsch JA et al (1996) Identification of quantitative trait loci under drought conditions in tropical maize. 1. Flowering parameters and the anthesis-silking interval. Theor Appl Genet 92:905–914CrossRefGoogle Scholar
  69. Sakamoto A, Murata N (2002) The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ 25:163–171CrossRefGoogle Scholar
  70. Sears ER (1976) Genetic control of chromosome pairing in wheat. Annu Rev Genet 10:31–51CrossRefGoogle Scholar
  71. Shannon MC (1997) Adaptation of plants to salinity. Adv Agron 60:75–120CrossRefGoogle Scholar
  72. Sharma DL, Anderson WK (2004) Small grain screenings in wheat: interactions of cultivars with season, site, and management practices. Aust J Agric Res 55:797–809CrossRefGoogle Scholar
  73. Skovmand B, Reynolds MP, DeLacy IH (2001) Mining wheat germplasm collections for yield enhancing traits. Euphytica 119:25–32CrossRefGoogle Scholar
  74. Skylas DJ, Cordwell SJ, Hains PG, Larsen MR, Basseal DJ, Walsh BJ, Blumenthal C, Rathmell W, Copeland L, Wrigley CW (2002) Heat shock of wheat during grain filling: proteins associated with heat-tolerance. J Cereal Sci 35:175–188CrossRefGoogle Scholar
  75. Trethowan RM (2007) Breeding wheat for high iron and zinc at CIMMYT: state of the art, challenges and future prospects. In: Proceedings of Seventh International Wheat Conference. Mar del Plata, ArgentinaGoogle Scholar
  76. Trethowan RM, Mujeeb-Kazi A (2008) Novel germplasm resources for improving environmental stress tolerance of hexaploid wheat. Crop Sci 48:1255–1265CrossRefGoogle Scholar
  77. Trethowan RM, Singh RP, Huerta-Espino J, Crossa J, Ginkel M van (2001a) Coleoptile length variation of near-isogenic Rht lines of modern CIMMYT bread and durum wheats. Field Crop Res 70:167–176CrossRefGoogle Scholar
  78. Trethowan RM, Crossa J, Ginkel M van Rajaram S (2001b) Relationships among bread wheat international yield testing locations in dry areas. Crop Sci 41:1461–1469CrossRefGoogle Scholar
  79. Trethowan RM, Reynolds M, Sayre K, Ortiz-Monasterio I (2005) Adapting wheat cultivars to resource conserving farming practices and human nutritional needs. Ann Appl Biol 146:405–413CrossRefGoogle Scholar
  80. Trethowan RM, Manes Y, Chattha T (2009) Breeding for improved adaptation to conservation agriculture improves crop yields. Proceedings of the 4th International Congress on Conservation Agriculture, New Delhi, February 4–7 NASC Complex, Pusa, New Delhi 110 012 (in press)Google Scholar
  81. Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314:1298–1301CrossRefGoogle Scholar
  82. Ullrich SE, Muir CE (1986) Genotypic response of spring barley to alternative tillage systems. Cereal Res Commun 14:161–168Google Scholar
  83. Villareal RL, Mujeeb-Kazi A (1999) Exploiting synthetic hexaploids for abiotic stress tolerance in wheat. In: Proceedings of the tenth regional wheat workshop for Eastern, Central and Southern Africa, University of Stellenbosch, South Africa, 14–18 September 1998, pp 542–552Google Scholar
  84. Villareal RL, del Toro E, Mujeeb-Kazi A, Rajaram S (1995) The 1BL/1RS chromosome translocation effect on yield characteristics in a Triticum aestivum L. cross. Plant Breeding 114:497–500CrossRefGoogle Scholar
  85. Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223CrossRefGoogle Scholar
  86. Warburton ML, Crossa J, Franco J, Kazi M, Trethowan R, Rajaram S, Pfeiffer W, Zhang P, Dreisigacker S, van Ginkel M (2006) Bringing wild relatives back into the family: recovering genetic diversity of CIMMYT bread wheat germplasm. Euphytica 149:289–301CrossRefGoogle Scholar
  87. Weightman RM, Millar S, Alava J, Foulkes MJ, Fish L, Snape JW (2008) Effects of drought and the presence of the 1BL/1RS translocation on grain vitreosity, hardness and protein content in winter wheat. J Cereal Sci 47:457–468CrossRefGoogle Scholar
  88. Welch RM, Graham RD (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 55:353–364CrossRefGoogle Scholar
  89. William HM, Trethowan R, Crosby-Galvan EM (2007) Wheat breeding assisted by markers: CIMMYT’s experience. Euphytica 157:307–319CrossRefGoogle Scholar
  90. Yang J, Sears RG, Gill BS, Paulsen GM (2002) Growth and senescence characteristics associated with tolerance of wheat-alien amphiploids to high temperature under controlled conditions. Euphytica 126:185–193CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • R. M. Trethowan
    • 1
  • M. A. Turner
    • 1
  • T. M. Chattha
    • 1
  1. 1.The University of Sydney, Plant Breeding InstituteSydneyAustralia

Personalised recommendations