Skip to main content

Breeding Strategies to Adapt Crops to a Changing Climate

  • Chapter
  • First Online:
Climate Change and Food Security

Part of the book series: Advances in Global Change Research ((AGLO,volume 37))

Abstract

Climate change is expected to reduce global crop productivity, although the impact will vary region to region. At many locations, particularly those at lower latitudes, the environment will become drier and hotter, which will reduce crop yields and potentially change the incidence of insect pests and diseases. These climatic changes are also expected to alter the nutritional properties and processing quality of crop products. This chapter describes breeding approaches that may be employed to mitigate the effects of increased heat and drought in the crop production environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad H, Bajelan B (2008) Heritability of drought tolerance in wheat. Am Eurasian J Agric Environ Sci 3:632–635

    Google Scholar 

  • APA (2004) Population and society: issues, research, policy. In: 12th Biennial Conference, Australian Population Association, Canberra, 15–17 September 2004

    Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Bänziger M, Setimela PS, Hodson D, Vivek B (2004) Breeding for improved drought tolerance in maize adapted to southern Africa. In: Proceedings of workshop on “Resilient Crops for Water Limited Environments”, Cuernavaca, Mexico, 24–28 May 2004

    Google Scholar 

  • Bertholdsson NO (2005) Early vigour and allelopathy – two useful traits for enhanced barley and wheat competitiveness against weeds. Weed Res (Oxford) 45:94–102

    Article  Google Scholar 

  • Blum A, Pnuel Y (1990) Physiological attributes associated with drought resistance to wheat cultivars in a Mediterranean Environment. Aust J Agric Res 41:799–810

    Article  Google Scholar 

  • Blumenthal C, Wrigley CW, Batey IL, Barlow EWR (1994) The heat-shock response relevant to molecular and structural changes in wheat yield and quality. Aust J Plant Physiol 21:901–909

    Article  CAS  Google Scholar 

  • Bonnett DG, Rebetzke GJ, Spielmeyer W (2005) Strategies for efficient implementation of molecular markers in wheat breeding. Mol Breeding 15:75–85

    Article  CAS  Google Scholar 

  • Boubaker M, Yamada T (1991) Screening spring wheat genotypes (Triticum sp.) for seedling emergence under optimal and suboptimal temperature conditions. Jpn J Breed 41:381–387

    Google Scholar 

  • Brakke JP, Francis CA, Nelson LA, Gardner CO (1983) Genotype by cropping system interactions in maize grown in a short season environment. Crop Sci 23:868–870

    Article  Google Scholar 

  • Braun HJ, Brettell R (2009) The role of international centers in enhancing cooperation in wheat improvement. In: Borlaug Global Rust Initiative, Technical Workshop, Ciudad Obregon, 20 March 2009

    Google Scholar 

  • Byerlee D, Moya P (1993) Impacts of international wheat breeding research in the developing world, 1966–1990. CIMMYT, Mexico City, Mexico DF

    Google Scholar 

  • Ceccarelli S, Grando S (2007) Decentralized-participatory plant breeding: an example of demand driven research. Euphytica 155:349–360

    Article  Google Scholar 

  • Chapman SC, Cooper M, Butler DG, Henzell RG (2000) Genotype by environment interactions affecting grain sorghum. I. Characteristics that confound interpretation of hybrid yield. Aust J Agric Res 51:197–207

    Article  Google Scholar 

  • Chapman S, Cooper M, Podlich D, Hammer G (2003) Evaluating plant breeding strategies by simulating gene action and dryland environment effects. Agron J 95:99–113

    Article  Google Scholar 

  • Christensen, JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon W-T, Laprise R, Magaña Rueda V, Mearns L, Menéndez CG, Räisänen J, Rinke A, Sarr A, Whetton P (2007) Regional climate projections. In : Solomon S, Qin D, Manning M, Marquis M, Averyt KB, Tignor M, Miller HL, and Chen Z (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK and New York, NY, USA

    Google Scholar 

  • Crossa J, Cornelius PL, Sevedsadr M, Byrne P (1993) A shifted multiplicative model cluster analysis for grouping environments without genotype ranking change. Theor Appl Genet 85:577–586

    Article  Google Scholar 

  • Crossa J, Burgueno J, Dreisigacker S, Vargas M, Hererra-Foessel SA, Lillemo M, Singh RP, Trethowan R, Warburton M, Franco J, Reynolds M, Crouch JH, Ortiz R (2007) Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genet 177:1889–1913

    Article  CAS  Google Scholar 

  • DeLacy IH, Basford KE, Cooper M, Bull JK, McLaren CG (1996) Analysis of multi-environment trials, a historical perspective. In: Cooper M, Hammer GL (eds) Plant adaptation and crop improvement. CAB International, Wallingford, UK, pp 39–124

    Google Scholar 

  • Edmeades G, Banziger M, Campus H, Schussler J (2006) Improving tolerance to abiotic stresses in staple crops. A random or planned process? In: Lamkey KR, Lee M (eds) Plant breeding. The Arnel R. Hallauer International Symposium, Wiley-Blackwell, pp 293–309

    Google Scholar 

  • Ehdaie B, Whitkus RW, Waines JG (2003) Root biomass, water-use efficiency, and performance of wheat-rye translocations of chromosomes 1 and 2 in spring bread wheat ‘Pavon’. Crop Sci 43:710–717

    Article  Google Scholar 

  • Ehlers JD, Hall AE (1998) Heat tolerance of contrasting cowpea lines in short and long days. Field Crop Res 55:11–21

    Article  Google Scholar 

  • Elmore RW (1990) Soybean cultivar response to tillage systems and planting date. Agron J 82:69–73

    Article  Google Scholar 

  • Ezzati M, Lopez AD, Rodgers A, Vander Hoorn S, Murray CJL (2002) Selected major risk factors and global and regional burden of disease. Lancet (British edition) 360:1347–1360

    Google Scholar 

  • FAO (2001) Climate change: implications for food safety paper. http://www.fao.org/ag/agn/agns/files/HLC1_Climate_Change_and_Food_Safety.pdf

  • FAO(2005) Rice is life. International year of rice 2004 and its implementation. Food and Agriculture Organization of the United Nations (FAO), Rome, Italy

    Google Scholar 

  • Farooq S, Farooq-E-Azam (2001) Co-existence of salt and drought tolerance in Triticeae. Hereditas 135(2–3):205

    Google Scholar 

  • Feldman M (2001) The origin of cultivated wheat. In: Bonjean A, Angus W (eds) The world wheat book. Lavoisier, Paris

    Google Scholar 

  • Francis CA, Moomaw RS, Rajewski JF, Saeed M (1986) Grain sorghum hybrid interactions with tillage system and planting dates. Crop Sci 26:191–193

    Article  Google Scholar 

  • Ginkel van M, Ortiz-Monasterio I, Trethowan R, Hernandez E (2001) Methodology for selecting segregating populations for improved N-use efficiency in bread wheat. Euphytica 119:223–230

    Google Scholar 

  • Gororo NN, Eagles HA, Eastwood RF, Nicolas ME, Flood RG (2002) Use of Triticum tauschii to improve yield of wheat in low-yielding environments. Euphytica 123:241–254

    Article  Google Scholar 

  • Govaerts B, Fuentes M, Mezzalama M, Nicol MJ (2007) Infiltration, soil moisture, root rot and nematode populations after 12 years of different tillage, residue and crop rotation managements. Soil Till Res 94:209–219

    Article  Google Scholar 

  • Greene SL, Thomas CH, Afonin A (1999) Using geographic information to acquire wild crop germplasm for ex situ collections: II. Post-collection analysis. Crop Sci 39:843–849

    Article  Google Scholar 

  • Guimaraes EP (2002) Genetic diversity of rice production in Brazil. Pp 11–35. In ‘Genetic diversity in rice production: Case studies from Brazil, India and Nigeria”. Nguyen VN (ed.), FAO/Rome (Italy). Plant Production and Protection Division

    Google Scholar 

  • Gupta PK, Kulwal PL, Rustgi S (2005) Wheat cytogenetics in the genomics era and its relevance to breeding. Cytogenet Genome Res 109:315–327

    Article  CAS  Google Scholar 

  • Gutierrez A (2006) Estabilidad del rendimiento y calidad de semilla e industrial de trigos harineros en ambientes de riego y temporal y sistemas de labranza. PhD thesis, Colegio de Postgraduados, Montecillo, Texcoco, Edo de Mexico

    Google Scholar 

  • Guttieri MJ, Stark JC, O’Brien K, Souza E (2001) Relative sensitivity of Spring wheat grain yield and quality parameters to moisture deficit. Crop Sci 41:335–344

    Article  Google Scholar 

  • Hede AR, Skovmand B, Reynolds MP, Crossa J, Vilhelmsen AL, Stolen O (1999) Evaluating genetic diversity for heat tolerance traits in Mexican wheat landraces. Genet Resour Crop Evol 46:37–45

    Article  Google Scholar 

  • Hennessy K, McInnes K, Abbs D, Jones R, Bathols J, Suppiah R, Ricketts J, Rafter T, Collins D, Jones D (2004) Climate Change in New South Wales Part 2: Projected changes in climate extremes. CSIRO website: http://www.dar.csiro.au/publications/hennessy_2004c.pdf

  • Jiang GL, Shi JR, Ward RW (2007) QTL analysis of resistance to Fusarium head blight in the novel wheat germplasm CJ 9306. I. Resistance to fungal spread. Theor Appl Genet 116:3–13

    Article  CAS  Google Scholar 

  • Joshi AK, Chand R, Arun B, Singh RP, Ortiz R (2007) Breeding crops for reduced-tillage management in the intensive, rice-wheat systems of South Asia. Euphytica 153:135–151

    Article  Google Scholar 

  • Kennedy G, Nantel G, Shetty P (2002) The scourge of “hidden hunger”: global dimensions of micronutrient deficiencies. Food Nutr Agric 32:8–16

    Google Scholar 

  • Lage J, Trethowan RM (2008) CIMMYT’s use of synthetic hexaploid wheat in breeding for adaptation to rainfed environments globally. Aust J Agric Res 59:461–469

    Article  Google Scholar 

  • Liang YL, Richards RA (1999) Seedling vigor characteristics among Chinese and Australian wheats. Commun Soil Sci Plant Anal 30:159–165

    Article  CAS  Google Scholar 

  • Lillemo M, van Ginkel M, Trethowan RM, Hernandez E, Crossa J (2005) Differential adaptation of CIMMYT bread wheat to global high temperature environments. Crop Sci 45:2443–2453

    Article  Google Scholar 

  • Mace ES, Xia L, Jordan DR, Halloran K, Parh DK, Huttner E, Wenzl P, Kilian A (2008) DArT markers: diversity analyses and mapping in Sorghum bicolour. BMC Genomics 9:26

    Article  Google Scholar 

  • Machado S, Paulsen GM (2001) Combined effects of drought and high temperature on water relations of wheat and sorghum. Plant Soil 233:179–187

    Google Scholar 

  • Melo PGS, Melo LC, Soares AA, Lima LM de, Reis M de S, Juliatti FC, Cornelio VMO (2005) Study of the interaction genotypes × environments in the selection process of upland rice. Crop Breed Appl Biotechnol 5:38–46

    Google Scholar 

  • Menkir A (2008) Genetic variation for grain mineral content in tropical-adapted maize inbred lines. Food Chem 110:454–464

    Article  CAS  Google Scholar 

  • Mergoum M, Frohberg RC, Stack RW, Rasmussen JB, Friesen TL (2006) Registration of ‘Howard’ wheat. Crop Sci 46:2072–2073

    Google Scholar 

  • Moghaddam ME, Trethowan RM, William HM, Rezai A, Arzani A, Mirlohi AF (2005) Assessment of genetic diversity in bread wheat genotypes for tolerance to drought using AFLPs and agronomic traits. Euphytica 141:147–156

    Article  CAS  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  Google Scholar 

  • Murphy KM, Reeves PG, Jones SS (2008) Relationship between yield and mineral nutrient concentrations in historical and modern spring wheat cultivars. Euphytica 163:381–390

    Article  Google Scholar 

  • Nehvi FA, Shafiq Wani A, Zargar GH (2000) Heterosis in bread wheat (Triticum aestivum L.). Appl Biol Res 2:69–74

    Google Scholar 

  • Newhouse KE (1985) Genotype by tillage interactions in maize (Zea mays L.). Diss Abstr Int B (Sci Eng) 45:1973B

    Google Scholar 

  • Nultsch W (2001) Allgemeine Botanik. 11. Auflage. Georg Thieme Verlag, Stuttgart

    Google Scholar 

  • Ogbonnaya F, Dreccer F, Ye G, Trethowan RM, Lush D, Shepperd J, Ginkel M van (2007) Yield of synthetic backcross-derived lines in rainfed environments of Australia. Euphytica 157:321–336

    Article  Google Scholar 

  • Okogbenin E, Porto MCM, Egesi C, Mba C, Espinosa E, Santos LG, Ospina C, Marín J, Barrera E, Gutiérrez J, Ekanayake I, Iglesias C, Fregene MA (2007) Marker-assisted introgression of resistance to cassava mosaic disease into latin American germplasm for the genetic improvement of cassava in Africa. Crop Sci 47:1895–1904

    Article  Google Scholar 

  • Ozturk L, Yazici MA, Yucel C, Torun A, Cekic C, Bagci A, Ozkan H, Braun HJ, Savers Z, Cakmak I (2006) Concentration and localization of zinc during seed development and germination in wheat. Physiol Plant 128:144–152

    Article  CAS  Google Scholar 

  • Pingali P (2007) Westernization of Asian diets and the transformation of food systems: implications for research and policy. Food Policy 32:281–298

    Article  Google Scholar 

  • Rajaram S, Mann CE, Ortiz-Ferrara G, Mujeeb-Kazi A (1983) Adaptation, stability and high yield potential of certain 1B/1R CIMMYT wheats. In: Sakamoto S (ed) Proceedings of 6th International Wheat Genetics Symposium. Maruzen, Kyoto, pp 613–621

    Google Scholar 

  • Rebetzke GJ, Richards RA, Sirault XRR, Morrison AD (2004) Genetic analysis of coleoptile length and diameter in wheat. Aust J Agric Res 55:733–743

    Article  Google Scholar 

  • Rebetzke GJ, Richards RA, Fettell NA, Long M, Condon AG, Forrester RI, Botwright TL (2007) Genotypic increases in coleoptile length improves stand establishment, vigour and grain yield of deep sown wheat. Field Crop Res 100:10–23

    Article  Google Scholar 

  • Reddy BVS, Ramesh S, Longvah T (2005) Prospects of breeding for micronutrients and beta-carotene-dense sorghums. Int Sorghum Millets Newsl 46:10–14

    Google Scholar 

  • Reynolds MP, Trethowan RM (2007) Physiological interventions in breeding for adaptation to abiotic stress. pp 129–146. In: Spiertz JHJ, Struik PC, Van Laar HH (eds) Scale and complexity in plant systems research, gene-plant-crop relations. Springer, The Netherlands

    Google Scholar 

  • Reynolds M, Dreccer F, Trethowan RM (2007b) Drought adaptive mechanisms from wheat landraces and wild relatives. J Exp Bot 58:177–186

    Article  CAS  Google Scholar 

  • Reynolds MP, Pierre CS, Saad ASI, Vargas M, Condon AG (2007a) Evaluating potential genetic gains in wheat associated with stress-adaptive trait expression in elite genetic resources under drought and heat stress. Crop Sci 47(Suppl 3):S172–S189

    Google Scholar 

  • Ribaut JM, Hoisington DA, Deutsch JA et al (1996) Identification of quantitative trait loci under drought conditions in tropical maize. 1. Flowering parameters and the anthesis-silking interval. Theor Appl Genet 92:905–914

    Article  CAS  Google Scholar 

  • Sakamoto A, Murata N (2002) The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ 25:163–171

    Article  CAS  Google Scholar 

  • Sears ER (1976) Genetic control of chromosome pairing in wheat. Annu Rev Genet 10:31–51

    Article  CAS  Google Scholar 

  • Shannon MC (1997) Adaptation of plants to salinity. Adv Agron 60:75–120

    Article  Google Scholar 

  • Sharma DL, Anderson WK (2004) Small grain screenings in wheat: interactions of cultivars with season, site, and management practices. Aust J Agric Res 55:797–809

    Article  Google Scholar 

  • Skovmand B, Reynolds MP, DeLacy IH (2001) Mining wheat germplasm collections for yield enhancing traits. Euphytica 119:25–32

    Article  Google Scholar 

  • Skylas DJ, Cordwell SJ, Hains PG, Larsen MR, Basseal DJ, Walsh BJ, Blumenthal C, Rathmell W, Copeland L, Wrigley CW (2002) Heat shock of wheat during grain filling: proteins associated with heat-tolerance. J Cereal Sci 35:175–188

    Article  CAS  Google Scholar 

  • Trethowan RM (2007) Breeding wheat for high iron and zinc at CIMMYT: state of the art, challenges and future prospects. In: Proceedings of Seventh International Wheat Conference. Mar del Plata, Argentina

    Google Scholar 

  • Trethowan RM, Mujeeb-Kazi A (2008) Novel germplasm resources for improving environmental stress tolerance of hexaploid wheat. Crop Sci 48:1255–1265

    Article  Google Scholar 

  • Trethowan RM, Singh RP, Huerta-Espino J, Crossa J, Ginkel M van (2001a) Coleoptile length variation of near-isogenic Rht lines of modern CIMMYT bread and durum wheats. Field Crop Res 70:167–176

    Article  Google Scholar 

  • Trethowan RM, Crossa J, Ginkel M van Rajaram S (2001b) Relationships among bread wheat international yield testing locations in dry areas. Crop Sci 41:1461–1469

    Article  Google Scholar 

  • Trethowan RM, Reynolds M, Sayre K, Ortiz-Monasterio I (2005) Adapting wheat cultivars to resource conserving farming practices and human nutritional needs. Ann Appl Biol 146:405–413

    Article  Google Scholar 

  • Trethowan RM, Manes Y, Chattha T (2009) Breeding for improved adaptation to conservation agriculture improves crop yields. Proceedings of the 4th International Congress on Conservation Agriculture, New Delhi, February 4–7 NASC Complex, Pusa, New Delhi 110 012 (in press)

    Google Scholar 

  • Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314:1298–1301

    Article  CAS  Google Scholar 

  • Ullrich SE, Muir CE (1986) Genotypic response of spring barley to alternative tillage systems. Cereal Res Commun 14:161–168

    Google Scholar 

  • Villareal RL, Mujeeb-Kazi A (1999) Exploiting synthetic hexaploids for abiotic stress tolerance in wheat. In: Proceedings of the tenth regional wheat workshop for Eastern, Central and Southern Africa, University of Stellenbosch, South Africa, 14–18 September 1998, pp 542–552

    Google Scholar 

  • Villareal RL, del Toro E, Mujeeb-Kazi A, Rajaram S (1995) The 1BL/1RS chromosome translocation effect on yield characteristics in a Triticum aestivum L. cross. Plant Breeding 114:497–500

    Article  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61:199–223

    Article  Google Scholar 

  • Warburton ML, Crossa J, Franco J, Kazi M, Trethowan R, Rajaram S, Pfeiffer W, Zhang P, Dreisigacker S, van Ginkel M (2006) Bringing wild relatives back into the family: recovering genetic diversity of CIMMYT bread wheat germplasm. Euphytica 149:289–301

    Article  CAS  Google Scholar 

  • Weightman RM, Millar S, Alava J, Foulkes MJ, Fish L, Snape JW (2008) Effects of drought and the presence of the 1BL/1RS translocation on grain vitreosity, hardness and protein content in winter wheat. J Cereal Sci 47:457–468

    Article  CAS  Google Scholar 

  • Welch RM, Graham RD (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 55:353–364

    Article  CAS  Google Scholar 

  • William HM, Trethowan R, Crosby-Galvan EM (2007) Wheat breeding assisted by markers: CIMMYT’s experience. Euphytica 157:307–319

    Article  Google Scholar 

  • Yang J, Sears RG, Gill BS, Paulsen GM (2002) Growth and senescence characteristics associated with tolerance of wheat-alien amphiploids to high temperature under controlled conditions. Euphytica 126:185–193

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Trethowan, R.M., Turner, M.A., Chattha, T.M. (2010). Breeding Strategies to Adapt Crops to a Changing Climate. In: Lobell, D., Burke, M. (eds) Climate Change and Food Security. Advances in Global Change Research, vol 37. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2953-9_9

Download citation

Publish with us

Policies and ethics