Skip to main content

Climate Models and Their Projections of Future Changes

  • Chapter
  • First Online:
Climate Change and Food Security

Part of the book series: Advances in Global Change Research ((AGLO,volume 37))

Abstract

This chapter describes global climate models and their output. The current approaches for analyzing their simulations, characterizing the range of likely future outcomes, and making projections relevant for impact analysis are described, specifically referring to the latest assessment report of the Intergovernmental Panel on Climate Change. We provide a summary of future projections of average temperature and precipitation changes at continental scales, together with a broad brush picture of the likely changes in indices of extremes, characterizing both temperature and precipitation events. An analysis of changes in growing season length is also presented as an example of climate model output analysis directly relevant to studies of climate change impacts on food security.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barnett T, Zwiers FW, Hegerl GC et al. (IDAG) (2005) Detecting and attributing external influences on the climate system: a review of recent advances. J Clim 18:1291–1314

    Google Scholar 

  • Bony SR, Colman VM, Kattsov RP, et al. How well do we understand and evaluate climate change feedback processes? J Climate. 2006;19:3445–3482.

    Article  Google Scholar 

  • Christensen JH, Christensen OB. A summary of the PRUDENCE model projections of changes in European climate by the end of this century. Climatic Change. 2007;81(1):7–30.

    Article  Google Scholar 

  • Christensen JH, Hewitson B, Busuioc A, et al. Regional climate projections. In: Solomon S, Qin D, Manning M, et al., editors. The physical science basis. Contribution of working Group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press; 2007.

    Google Scholar 

  • Claussen M, Mysak LA, Weaver A, et al. Earth system models of intermediate complexity: closing the gap in the spectrum of climate system models. Climate Dynamics. 2002;18(7):579–586.

    Article  Google Scholar 

  • Friedlingstein P, Cox P, Betts R, et al. Climate-carbon cycle feedback analysis: results from the C4MIP model intercomparison. J Climate. 2006;19:3337–3353.

    Article  Google Scholar 

  • Giorgi F, Francisco R. Uncertainties in regional climate change predictions. A regional analysis of ensemble simulations with the HADCM2 GCM. Climate Dynamics. 2000;16:169–182.

    Article  Google Scholar 

  • Giorgi F, Mearns LO. Calculation of average, uncertainty range and reliability of regional climate changes from AOGCM simulations via the ‘reliabil-ity ensemble averaging’ (REA) method. J Climate. 2002;15:1141–1158.

    Article  Google Scholar 

  • Giorgi F, Mearns LO. Probability of regional climate change calculated using the reliability ensemble average (REA) method. Geophys Res Lett. 2003;30(12):1629–1632.

    Article  Google Scholar 

  • Gleckler PJ, Taylor KE, Doutriaux C. Performance metrics for climate models. J Geophys Res. 2008;. doi:10.1029/2007JD008972.

    Google Scholar 

  • Hall A, Qu X. Using the current seasonal cycle to constrain snow albedo feedback in future climate change. Geophys Res Lett. 2006;. doi:10.1029/2005GL025127.

    Google Scholar 

  • Hamon WR (1961) Estimating potential evapotranspiration. J Hydraul Div 87(HY3):107–120

    Google Scholar 

  • Hegerl GC, Zwiers FW, Braconnot P, et al. Understanding and attributing climate change. In: Solomon S, Qin D, Manning M, et al., editors. Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press; 2007.

    Google Scholar 

  • Held IM. The gap between simulation and understanding in climate modeling. Bull Am Meteorol Soc. 2005;86(11):1609–1614.

    Article  Google Scholar 

  • Kirtman BP, Shukla J. Interactive coupled ensemble: a new coupling strategy for GCMs. Geophys Res Lett. 2002;29:1029–1032.

    Article  Google Scholar 

  • Knutti R, Hegerl GC. The equilibrium sensitivity of the Earth’s temperature to radiation changes. Nature Geoscience. 2008;1:735–743.

    Article  CAS  Google Scholar 

  • Knutti R, Stocker TF, Joos F, Plattner GK. Constraints on radiative forcing and future climate change from observations and climate model ensembles. Nature. 2002;416:719–723.

    Article  CAS  Google Scholar 

  • Knutti R, Allen MR, Friedlingstein P, et al. A review of uncertainties in global temperature projections over the twenty-first century. J Climate. 2008;21:2651–2663.

    Article  Google Scholar 

  • Lempert RJ, Schlesinger ME. Robust strategies for abating climate change. Climatic Change. 2000;45(3–4):387–401.

    Article  Google Scholar 

  • Lobell DB, Field CB. Global scale climate–crop yield relationships and the impacts of recent warming. Environ Res Lett. 2007;. doi:10.1088/17489326/2/1/014002.

    Google Scholar 

  • Lobell DB, Burke MB, Tebaldi C, Mastrandrea MD, Falcon WP, Naylor RL. Prioritizing climate change adaptation needs for food security in 2030. Science. 2008;319(5863):607–610.

    Article  CAS  Google Scholar 

  • Meehl GA, Covey C, Delworth T, et al. The WCRP CMIP3 multimodel dataset. Bull Am Meteorol Soc. 2007a;88:1383–1394.

    Article  Google Scholar 

  • Meehl GA, Stocker TF, Collins WD, et al. Global climate projections. In: Solomon S, Qin D, Manning M, et al., editors. The physical science basis. Contribution of working Group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press; 2007b.

    Google Scholar 

  • Murphy JM, Sexton DMH, Barnett DN, Jones GS, Webb MJ, Collins M, et al. Quantification of modeling uncertainties in a large ensemble of climate change simulations. Nature. 2004;430:768–772.

    Article  CAS  Google Scholar 

  • Nakicenovic N, Swart R. IPCC special report on emissions scenarios. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press; 2000.

    Google Scholar 

  • Otto-Bliesner BL, Brady E, Clauzet G, et al. Last glacial maximum and holocene climate in CCSM3. J Climate. 2006;19:2526–2544.

    Article  Google Scholar 

  • Palmer TN, Doblas-Reyes FJ, Weisheimer A, Rodwell MJ. Toward seamless prediction calibration of climate change projections using seasonal forecasts. Bull Am Meteorol Soc. 2008;89(4):459–470.

    Article  Google Scholar 

  • Räisänen J. How reliable are climate models? Tellus. 2007;59(1):2–29.

    Article  Google Scholar 

  • Räisänen J, Palmer TN. A probability and decision-model analysis of a multimodel ensemble of climate change simulations. J Climate. 2001;14:3212–3226.

    Article  Google Scholar 

  • Randall DA, Wood RA, Bony S, et al. Climate models and their evaluation. In: Solomon S, Qin D, Manning M, et al., editors. The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press; 2007.

    Google Scholar 

  • Reichler T, Kim J. How well do coupled models simulate today’s climate. Bull Am Meteorol Soc. 2008;89(3):303–312.

    Article  Google Scholar 

  • Santer BD, Wigley TML, Schlesinger ME, Mitchell JFB. Developing climate scenarios from equilibrium gcm results. Technical note 47. Hamburg: Max Planck Institut für Meteorologie; 1990. p. 29.

    Google Scholar 

  • Smith DM, Cusack S, Colman AW, et al. Improved surface temperature prediction for the coming decade from a global climate model. Science. 2007;. doi:10.1126/science.1139540.

    Google Scholar 

  • Smith RL, Tebaldi C, Nychka DW, Mearns LO. Bayesian modeling of uncertainty in ensembles of climate models. J Am Stat Ass. 2009;104(485):97–116.

    Google Scholar 

  • Solomon S, Qin D, Manning M, et al., editors. Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press; 2007.

    Google Scholar 

  • Stainforth DA, Aina T, Christensen C, et al. Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature. 2005;433:403–406.

    Article  CAS  Google Scholar 

  • Stott PA, Kettleborough JA. Origins and estimates of uncertainty in predictions of twenty-first century temperature rise. Nature. 2002;416:723–726.

    Article  CAS  Google Scholar 

  • Tebaldi C, Knutti R. The use of the multi-model ensemble in probabilistic climate projections. Philos Trans R Soc A. 2007;1857:2053–2075.

    Article  Google Scholar 

  • Tebaldi C, Lobell DB. Towards probabilistic projections of climate change impacts on global crop yields. Geophys Res Lett. 2008;. doi:10.1029/2008GL033423.

    Google Scholar 

  • Tebaldi C, Mearns LO, Nychka DW, Smith RL. Regional probabilities of precipitation change: a Bayesian analysis of multimodel simulations. Geophys Res Lett. 2004;. doi:10.1029/2004GL021276.

    Google Scholar 

  • Tebaldi C, Smith RL, Nychka DW, Mearns LO. Quantifying uncertainty in projections of regional climate change: a Bayesian approach to the analysis of multi-model ensembles. J Climate. 2005;18(10):1524–1540.

    Article  Google Scholar 

  • Tebaldi C, Hayhoe K, Arblaster JM, Meehl GA. Going to the extremes: an intercomparison of model-simulated historical and future changes in extreme events. Climatic Change. 2006;79:185–211.

    Article  Google Scholar 

  • Thornton PK, Jones PG, Owiyo T, Kruska RL, Herrero M, Kristjanson P, Notenbaert A, Bekele N and Omolo A, with contributions from Orindi V, Otiende B, Ochieng A, Bhadwal S, Anantram K, Nair S, Kumar V, Kulkar U (2006) Mapping climate vulnerability and poverty in Africa. Report to the Department for International Development, ILRI, PO Box 30709, Nairobi 00100, Kenya, pp 171

    Google Scholar 

  • Vrac M, Stein ML, Hayhoe K, Liang XZ. A general method for validating statistical downscaling methods under future climate change. Geophys Res Lett. 2007;. doi:10.1029/2007GL030295.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Tebaldi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Tebaldi, C., Knutti, R. (2010). Climate Models and Their Projections of Future Changes. In: Lobell, D., Burke, M. (eds) Climate Change and Food Security. Advances in Global Change Research, vol 37. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2953-9_3

Download citation

Publish with us

Policies and ethics